Decision Rules for Postemergence Control of Pigweed (Amaranthusspp.) in Soybean (Glycine max)

Weed Science ◽  
1996 ◽  
Vol 44 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Anita Dieleman ◽  
Allan S. Hamill ◽  
Glenn C. Fox ◽  
Clarence J. Swanton

Weed control decision rules were derived for the application of postemergence herbicides to control pigweed species in soybean. Field experiments were conducted at two locations in 1992 and 1993 to evaluate soybean-pigweed interference. A damage function was determined that related yield loss to time of pigweed emergence, density, and soybean weed-free yield. A control function described pigweed species response to variable doses of imazethapyr and thifensulfuron. The integration of these two functions formed the basis of an economic model used to derive two weed control decision rules, the biologist's “threshold weed density” and the economist's “optimal dose.” Time of weed emergence had a more significant role than weed density in the economic model. Later-emerging pigweed caused less yield loss and therefore, decision rules lead to overuse of herbicides if emergence time is not considered. The selected herbicide dose influenced the outcome of the control function. Depending on the desired level of weed control, a herbicide could be chosen to either eradicate the escaped weed species (label or biologically-effective doses) or reduce the growth of the weed species and thereby offset interference (optimal dose). The development of a biologically-effective dose by weed species matrix was recommended. Decision rules should not be utilized as an exclusive weed management strategy but rather as a component of an integrated weed management program.

Weed Science ◽  
1997 ◽  
Vol 45 (4) ◽  
pp. 557-563 ◽  
Author(s):  
Aca Č. Bosnić ◽  
Clarence J. Swanton

Economic decision rules for postemergence herbicide control of barnyardgrass in corn were developed. Damage and control functions that formed the basis of an economic model were estimated. Barnyardgrass density and time of emergence relative to the crop were fundamental to calculate the damage function. The control function described barnyardgrass dry weight response to variable doses of two herbicides. Both the biologist's and economist's weed control decision rules, derived from the economic model, were influenced by time of weed emergence relative to the crop, corn yield, and price. Inclusion of time of weed emergence relative to the crop improved our interpretative ability of derived decision rules. The biologist's threshold weed density was more sensitive to changes in parameter values than the economist's optimal herbicide dose strategy. Herbicide use with recommended label dose was greater than either the economically optimal or the biologically effective doses. Use of the biologically effective dose for postemergence weed control decisions was cost efficient and could be of practical significance to corn growers.


Author(s):  
Melih Yilar Omer Sozen ◽  
Ufuk Karadavut

This study was conducted to determine the effects of weed density and different weed control treatments on chickpea yield and yield components. The experiment was carried out in split plot design with 3 replications in experimental fields of Kirsehir Ahi Evran University during 2016 and 2017 crop seasons. Total nine treatments (no weed control, permanent weed control, one-time hoeing, two-time hoeing, three-time hoeing, herbicide application after emergence, one-time hoeing with herbicide application, two-time hoeing with herbicide application and three-time hoeing with herbicide application) were compared to know the most effective weed control method. Vaccaria pyramidata Medik., Sinapis arvensis L., Acroptilon repens L. weed species were found to be the most intense in the experimental area. All weed control applications had significant effect on chickpea yield and yield components compared to weedy plots. Three-time hoeing with herbicide application increased the yield by 361.55-478.50% compared to weedy plots. Likewise, three-time hoeing application even increased the yield by 348.50-357.09% compared to weedy plots. The results revealed that three-time hoeing with herbicide and three-time hoeing applications stood out in weed management to obtain a good yield in chickpea cultivation at Kirsehir province.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Bhupesh Kumar Mishra ◽  
Santosh Pandey

The different weed control methods (two hand weeding at 25 and 45 days after sowing (DAS) and one hand weeding at 25 DAS along with unweeded control ), organic sources of nitrogen (vermicompost, poultry manure, city manure and FYM) and their interaction were compared for their efficiency on various weed species and yield of wheat. Two hand weeding (W2) gave significantly maximum weed control. This was followed by one hand weeding at 25 DAS and control. These weed control methods significantly enhanced the yield and yield components of wheat. Among organic sources of nitrogen vermicompost (M1) recorded minimum weed density, weed dry weight and maximum yield, followed by poultry manure, city manure and FYM.


Author(s):  
Jevgenija Ņečajeva ◽  
Zane Mintāle ◽  
Ieva Dudele ◽  
Anda Isoda-Krasovska ◽  
Jolanta Čūrišķe ◽  
...  

<p class="R-AbstractKeywords"><span lang="EN-GB">Integrated weed management (IWM) is a complex approach to weed control that is based on use of several different methods complementing each other, instead of relying on one single method, like chemical weed control. Weed control methods that can be used as parts of IWM strategy include mechanical weed control, application of herbicides, low tillage, changes in the rate and application time of fertilizers, use of undersown crops and crop rotation. Weed surveys were carried out in 2013 and 2014 in the southeastern part of Latvia. The aim of this study was to assess the effect of crop rotation and other field management practices on weed density and weed species composition using the data collected in the surveys. Survey was carried out in the arable fields of conventional farms within four different size categories. One of the significant factors that explained the variation of weed composition within a field was a proportion of cereals in crop rotation within a four year period. Further surveys are required to estimate the effects of climatic variables. Density-dependence can also be important for practical management decisions for particular weed species and should be investigated.</span></p>


2015 ◽  
Vol 25 (3) ◽  
pp. 335-339 ◽  
Author(s):  
Makhan S. Bhullar ◽  
Simerjeet Kaur ◽  
Tarundeep Kaur ◽  
Amit J. Jhala

Potato (Solanum tuberosum) is one of four major food crops in the world. Weed control is a major component in potato production and has been accomplished using different methods, including but not limited to the use of herbicides and straw mulch. A combination of preemergence herbicide and straw mulch may improve weed control; however, no information is available for combining both methods, along with their effects on weed control, weed density, and potato tuber yields. The objective of this study was to evaluate weed control in potato using atrazine or straw mulch applied alone at different rates or in combination. A field experiment was conducted for 4 years from 2006 to 2010 in Ludhiana, Punjab, India. Common weeds included burclover (Medicago arabica), common lambsquarters (Chenopodium album), littleseed canarygrass (Phalaris minor), purple nutsedge (Cyperus rotundus), scarlet pimpernel (Anagallis arvensis), swinecress (Coronopus didymus), and toothed dock (Rumex dentatus). Results suggested that atrazine applied alone was not very effective and resulted in 0% to 78% control depending on the weed species being investigated at 30 days after treatment (DAT). Straw mulch applied alone at any rate provided ≥90% control of toothed dock, but control of other weed species was variable. A combination of atrazine and straw mulch at any rate usually resulted in >90% weed control at 30 DAT, except for swinecress and purple nutsedge. This treatment combination also resulted in weed density as low as 0 plant/m2 for common lambsquarters, scarlet pimpernel, and toothed dock. Potato tuber weight and yield was significantly higher in all treatments compared with untreated control without difference among them. It is concluded that a combination of straw mulch and atrazine can provide effective weed control in potato.


Author(s):  
Eduardo Roncatto ◽  
Arthur Arrobas Martins Barroso ◽  
Juliana Calegarim ◽  
Felipe Ridolfo Lucio ◽  
Paulo Fernando Adami

Weed densities, species, costs of control, crop value and interference periods should be considered for weed management. With this regard, three experiments were carried out to evaluate weed control periods and weed density in a new soybean cultivar. In ths first trial, control efficacy was measured by visual phytotoxicity of four weed species I. hederifolia, E. heterophylla, Conyza spp. and R. brasiliensis using four different herbicides with two doses each: glyphosate (720 and 1,440 g ea ha-1), 2.4-D (670 and 1,340 g ea ha-1), glufosinate (400 and 600 g ea ha-1) and glyphosate + 2.4-D (410 + 390 and 820 + 780 g ea ha-1). Herbicides were sprayed in an entirely randomized 4x8+1 factorial scheme with six repetitions. In the second experiment, 2,4-D-resistant soybean growth was measured under increasing densities of the same weeds (21 plants m² vs 21, 42, 84, 168 and 336 plants m²). This experiment was conducted under entirely randomized design with 25 treatments with four repetitions. Critical level of damage and economic threshold level of each weed species in soybean were measured using non-linear regressions. In a third experiment, weed with soybean were submitted to increasing periods of control and coexistence (7, 14, 21, 28, 35, 49 and 70 days after soybean emergence, plus two control treatments). Glufosinate and glyphosate+2.4-D (820 + 780 g ea ha-1) showed greater weed control than glyphosate alone (720 g ea ha-1). The yield loss of 0.85, 2.12, 5.71 and 34.24% were found for each weed of E. heterophylla, I. hederifolia, R. brasiliensis and Conyza spp., coexisting with soybean. There was a soybean grain yield loss of 50% in the weedy treatment. Soybean weed management should occur between 18thand 48th days after its emergence. Economic threshold level on soybean yield suggested is below one plant of Conyza spp. and R. brasiliensis per m-². The use of glufosinate and glyphosate+2,4-D provides a greater flexibility of herbicide use for farmers


2020 ◽  
Vol 57 (3) ◽  
pp. 199-210
Author(s):  
Rajib Kundu ◽  
Mousumi Mondal ◽  
Sourav Garai ◽  
Ramyajit Mondal ◽  
Ratneswar Poddar

Field experiments were conducted at research farm of Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India (22°97' N latitude and 88°44' E longitude, 9.75 m above mean sea level) under natural weed infestations in boro season rice (nursery bed as well as main field) during 2017-18 and 2018-19 to evaluate the herbicidal effects on weed floras, yield, non-target soil organisms to optimize the herbicide use for sustainable rice-production. Seven weed control treatments including three doses of bispyribac-sodium 10% SC (150,200, and 250 ml ha-1), two doses of fenoxaprop-p-ethyl 9.3% EC (500 and 625 ml ha-1), one weed free and weedy check were laid out in a randomized complete block design, replicated thrice. Among the tested herbicides, bispyribac-sodium with its highest dose (250 ml ha-1) resulted in maximum weed control efficiency, treatment efficiency index and crop resistance index irrespective of weed species and dates of observation in both nursery as well as main field. Similar treatment also revealed maximum grain yield (5.20 t ha-1), which was 38.38% higher than control, closely followed by Fenoxaprop-p-ethyl (625 ml ha-1) had high efficacy against grasses, sedge and broadleaf weed flora. Maximum net return (Rs. 48765 ha-1) and benefit cost ratio (1.72) were obtained from the treatment which received bispyribac-sodium @ 250 ml ha-1. Based on overall performance, the bispyribac-sodium (250 ml ha-1) may be considered as the best herbicide treatment for weed management in transplanted rice as well as nursery bed.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


2006 ◽  
Vol 86 (3) ◽  
pp. 875-885 ◽  
Author(s):  
J. R. Moyer ◽  
S. N. Acharya

Weeds, especially dandelion (Taraxacum officinale Weber in F.H. Wigg.), tend to infest a forage alfalfa (Medicago sativa L.) stand 2 to 4 yr after establishment. To develop better weed management systems, experiments were conducted at Lethbridge, Alberta, from 1995 to 2002 and Creston, British Columbia, from 1998 to 2001, which included the alfalfa cultivars Beaver (standard type) and AC Blue J (Flemish type) and annual applications of metribuzin and hexazinone. These herbicides are registered for weed control in irrigated alfalfa in Alberta and alfalfa grown for seed. In addition, two sulfonylurea herbicides, metsulfuron and sulfosulfuron, and glyphosate were included. All of the herbicides except glyphosate controlled or suppressed dandelion and mustard family weeds. Metsulfuron at 5 g a.i. ha-1 almost completely controlled dandelion at both locations. However, after metsulfuron application at Lethbridge, dandelion was replaced with an infestation of downy brome, which is unpalatable for cattle. None of the herbicides increased total forage (alfalfa + weed) yield, and in some instances herbicides reduced forage quality by causing a shift from a palatable to an unpalatable weed species. However, it was observed that AC Blue J consistently yielded more than Beaver, and weed biomass was consistently less in the higher-yielding cultivar. AC Blue J was developed primarily for the irrigated area in southern Alberta and for southern British Columbia. Therefore, additional experiments should be conducted to determine which alfalfa cultivars have the greatest ability to compete with weeds in other regions of western Canada. Key words: Alfalfa yield, dandelion, forage quality, weed control


2011 ◽  
Vol 25 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Jared R. Whitaker ◽  
Alan C. York ◽  
David L. Jordan ◽  
A. Stanley Culpepper

Glyphosate-resistant (GR) Palmer amaranth has become a serious pest in parts of the Cotton Belt. Some GR cotton cultivars also contain the WideStrike™ insect resistance trait, which confers tolerance to glufosinate. Use of glufosinate-based management systems in such cultivars could be an option for managing GR Palmer amaranth. The objective of this study was to evaluate crop tolerance and weed control with glyphosate-based and glufosinate-based systems in PHY 485 WRF cotton. The North Carolina field experiment compared glyphosate and glufosinate alone and in mixtures applied twice before four- to six-leaf cotton. Additional treatments included glyphosate and glufosinate mixed withS-metolachlor or pyrithiobac applied to one- to two-leaf cotton followed by glyphosate or glufosinate alone on four- to six-leaf cotton. All treatments received a residual lay-by application. Excellent weed control was observed from all treatments on most weed species. Glyphosate was more effective than glufosinate on glyphosate-susceptible (GS) Palmer amaranth and annual grasses, while glufosinate was more effective on GR Palmer amaranth. Annual grass and GS Palmer amaranth control by glyphosate plus glufosinate was often less than control by glyphosate alone but similar to or greater than control by glufosinate alone, while mixtures were more effective than either herbicide alone on GR Palmer amaranth. Glufosinate caused minor and transient injury to the crop, but no differences in cotton yield or fiber quality were noted. This research demonstrates glufosinate can be applied early in the season to PHY 485 WRF cotton without concern for significant adverse effects on the crop. Although glufosinate is often less effective than glyphosate on GS Palmer amaranth, GR Palmer amaranth can be controlled with well-timed applications of glufosinate. Use of glufosinate in cultivars with the WideStrike trait could fill a significant void in current weed management programs for GR Palmer amaranth in cotton.


Sign in / Sign up

Export Citation Format

Share Document