scholarly journals Physical mechanisms of mixing in stellar interiors

1984 ◽  
Vol 105 ◽  
pp. 491-512
Author(s):  
Evry Schatzman

The different mechanisms by which mixing can take place in stellar interiors are considered : the classical Rayleigh-Benard instability with penetrative convection and over-shooting, semi-convection, gravitationnal and radiative settling, turbulent mixing. The latter mechanism is thoroughly described, from the driving force of turbulent mixing to its influence on stellar structure, stellar evolution and the analysis of the corresponding observationnal data.Turbulent mixing has to be considered each time the building up of a concentration gradient takes place, either by gravitationnal or radiative settling or by nuclear reactions. Turbulent mixing, as a first approximation, can be described by an isotropic diffusion coefficient. The process is then governed by a diffusion equation. The behaviour of the solution of the diffusion equation needs some explanation in order to be well understood.A number of examples concerning surface abundances of chemical elements are given (3He, 7Li, Be, 12C, 13C, 14N), as well as a discussion of the solar neutrinos problem.The building up of a µ-barrier, which stops the turbulence allows stellar evolution towards the giant branch and explains nitrogen abundance at the surface of giants of the first ascending branch.Turbulent mixing is also of some importance for the transfer of angular momentum and has to be taken into account for explaining the abundance of the elements in Wolf-Rayet stars.

2019 ◽  
Vol 200 ◽  
pp. 01017
Author(s):  
Silvia Galano ◽  
Arturo Colantonio ◽  
Silvio Leccia ◽  
Emanuella Puddu ◽  
Irene Marzoli ◽  
...  

We present a teaching module focused on stellar structure, functioning and evolution. Drawing from literature in astronomy education, we identified three key ideas which are fundamental in understanding stars’ functioning: spectral analysis, mechanical and thermal equilibrium, energy and nuclear reactions. The module is divided into four phases, in which the above key ideas and the physical mechanisms involved in stars’ functioning are gradually introduced. The activities combine previously learned laws in mechanics, thermodynamics, and electromagnetism, in order to get a complete picture of processes occurring in stars. The module was piloted with two intact classes of secondary school students (N = 59 students, 17–18 years old) and its efficacy in addressing students’ misconceptions and wrong ideas was tested using a ten-question multiple choice questionnaire. Results support the effectiveness of the proposed activities. Implications for the teaching of advanced physics topics using stars as a fruitful context are briefly discussed.


1976 ◽  
Vol 32 ◽  
pp. 169-182
Author(s):  
B. Kuchowicz

SummaryIsotopic shifts in the lines of the heavy elements in Ap stars, and the characteristic abundance pattern of these elements point to the fact that we are observing mainly the products of rapid neutron capture. The peculiar A stars may be treated as the show windows for the products of a recent r-process in their neighbourhood. This process can be located either in Supernovae exploding in a binary system in which the present Ap stars were secondaries, or in Supernovae exploding in young clusters. Secondary processes, e.g. spontaneous fission or nuclear reactions with highly abundant fission products, may occur further with the r-processed material in the surface of the Ap stars. The role of these stars to the theory of nucleosynthesis and to nuclear physics is emphasized.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jørgen Christensen-Dalsgaard

AbstractThe Sun provides a critical benchmark for the general study of stellar structure and evolution. Also, knowledge about the internal properties of the Sun is important for the understanding of solar atmospheric phenomena, including the solar magnetic cycle. Here I provide a brief overview of the theory of stellar structure and evolution, including the physical processes and parameters that are involved. This is followed by a discussion of solar evolution, extending from the birth to the latest stages. As a background for the interpretation of observations related to the solar interior I provide a rather extensive analysis of the sensitivity of solar models to the assumptions underlying their calculation. I then discuss the detailed information about the solar interior that has become available through helioseismic investigations and the detection of solar neutrinos, with further constraints provided by the observed abundances of the lightest elements. Revisions in the determination of the solar surface abundances have led to increased discrepancies, discussed in some detail, between the observational inferences and solar models. I finally briefly address the relation of the Sun to other similar stars and the prospects for asteroseismic investigations of stellar structure and evolution.


2014 ◽  
Vol 9 (S307) ◽  
pp. 208-210
Author(s):  
P. Auclair-Desrotour ◽  
S. Mathis ◽  
C. Le Poncin-Lafitte

AbstractTidal dissipation in stars is one of the key physical mechanisms that drive the evolution of binary and multiple stars. As in the Earth oceans, it corresponds to the resonant excitation of their eigenmodes of oscillation and their damping. Therefore, it strongly depends on the internal structure, rotation, and dissipative mechanisms in each component. In this work, we present a local analytical modeling of tidal gravito-inertial waves excited in stellar convective and radiative regions respectively. This model allows us to understand in details the properties of the resonant tidal dissipation as a function of the excitation frequencies, the rotation, the stratification, and the viscous and thermal properties of the studied fluid regions. Then, the frequencies, height, width at half-height, and number of resonances as well as the non-resonant equilibrium tide are derived analytically in asymptotic regimes that are relevant in stellar interiors. Finally, we demonstrate how viscous dissipation of tidal waves leads to a strongly erratic orbital evolution in the case of a coplanar binary system. We characterize such a non-regular dynamics as a function of the height and width of resonances, which have been previously characterized thanks to our local fluid model.


Thermonuclear reactions provide the main source of radiated energy for stars and they are also believed to be responsible for the production of most of the heavy elements in the Universe. The thermonuclear plasma is confined by the force of gravitation and for most of a star’s history the reactions occur slowly and steadily. In some circumstances, the properties of a star change very rapidly and explosive nuclear reactions occur. In very dense stellar interiors the energy states available to electrons may be limited by the Pauli exclusion principle. When thermonuclear reactions start in such a degenerate gas, a rise in temperature is not accompanied by a significant rise in pressure and as a result there may be a runaway increase in reaction rate. In contrast, when reactions start in a non-degenerate gas, there is normally an effective thermostat. A star is usually opaque to reaction products, so that there is no problem in maintaining the reaction temperature, but at late stages of stellar evolution nuclear or elementary particle reactions may produce large numbers of neutrinos and antineutrinos that do escape.


2008 ◽  
Vol 4 (S252) ◽  
pp. 439-449 ◽  
Author(s):  
Casey A. Meakin

AbstractThe hydrodynamic processes operating within stellar interiors are far richer than represented by the best stellar evolution model available. Although it is now widely understood, through astrophysical simulation and relevant terrestrial experiment, that many of the basic assumptions which underlie our treatments of stellar evolution are flawed, we lack a suitable, comprehensive replacement. This is due to a deficiency in our fundamental understanding of the transport and mixing properties of a turbulent, reactive, magnetized plasma; a deficiency in knowledge which stems from the richness and variety of solutions which characterize the inherently non-linear set of governing equations. The exponential increase in availability of computing resources, however, is ushering in a new era of understanding complex hydrodynamic flows; and although this field is still in its formative stages, the sophistication already achieved is leading to a dramatic paradigm shift in how we model astrophysical fluid dynamics. We highlight here some recent results from a series of multi-dimensional stellar interior calculations which are part of a program designed to improve our one-dimensional treatment of massive star evolution and stellar evolution in general.


1956 ◽  
Vol 16 (4) ◽  
pp. 389-415 ◽  
Author(s):  
Kimiko Nakagawa ◽  
Takashi Ohmura ◽  
Hisao Takebe ◽  
Shinya Obi

Author(s):  
Douglas V. Hoyt ◽  
Kenneth H. Shatten

Our sun is a typical “second generation,” or G2, star nearly 4.5 billion years old. The sun is composed of 92.1% hydrogen and 7.8% helium gas, as well as 0.1% of such all-important heavy elements as oxygen, carbon, nitrogen, silicon, magnesium, neon, iron, sulfur, and so forth in decreasing amounts (see Appendix 3). The heavy elements are generated from nucleosynthetic processes in stars, novae, and supernovae after the original formation of the Universe. This has led to the popular statement that we are, literally, the “children of the stars” because our bodies are composed of the elements formed inside stars. From astronomical studies of stellar structure, we know that, since its beginnings, the sun’s luminosity has gradually increased by about 30%. This startling conclusion has raised the so-called faint young sun climate problem: if the sun were even a few percent fainter in the past, then Earth could have been covered by ice. In this frozen state, it might not have warmed because the ice would reflect most of the incoming solar radiation back into space. Although volcanic aerosols covering the ice, early oceans moderating the climate, and other theories have been suggested to circumvent the “faint young sun” problem, how Earth escaped the ice catastrophe remains uncertain. How can the sun generate vast amounts of energy for billions of years and still keep shining? Before nuclear physics, scientists believed the sun generated energy by means of slow gravitational collapse. Still, this process would only let the sun shine about 30 million years before its energy was depleted. To shine longer, the sun requires another energy source. We now believe that a chain of nuclear reactions occurs inside the sun, with four hydrogen nuclei fusing into one helium nucleus at the sun’s center. Because the four hydrogen nuclei have more mass than the one helium nucleus, the resulting mass deficit is converted into energy according to Einstein’s famous formula E = mc2. The energy, produced near the sun’s center, creates a central temperature of about 15 million degrees Kelvin (°K).


1993 ◽  
Vol 137 ◽  
pp. 410-425 ◽  
Author(s):  
A. Noels ◽  
N. Grevesse

AbstractWe present the standard models for small and intermediate main sequence stars and we discuss some of the problems arising with semiconvection and overshooting. The surface abundance of Li serves as a test for other physical mechanisms, including microscopic and turbulent diffusion, rotation and mass loss.


Sign in / Sign up

Export Citation Format

Share Document