scholarly journals The Coronal Responses to the Large-Scale and Long-Term Phenomena of the Lower Layers of the Sun

1980 ◽  
Vol 91 ◽  
pp. 87-104 ◽  
Author(s):  
J. Sýkora

Based on the assumption, generally accepted over the past decade, that all the forms of solar and interplanetary activity are responses to the magnetic fields generated initially in the subphotosphere, some characteristics of the large-scale and long-term behaviour of the solar corona during the last three solar cycles are presented.

2021 ◽  
Vol 645 ◽  
pp. A47
Author(s):  
K. Mursula ◽  
T. Getachew ◽  
I. I. Virtanen

Context. Weak magnetic field elements make a dominant contribution to the total magnetic field on the solar surface. Even so, little is known of their long-term occurrence. Aims. We study the long-term spatial–temporal evolution of the weak-field shift and skewness of the distribution of photospheric magnetic field values during solar cycles 21−24 in order to clarify the role and relation of the weak field values to the overall magnetic field evolution. Methods. We used Wilcox Solar Observatory (WSO) and the Synoptic Optical Long-term Investigations of the Sun Vector SpectroMagnetograph synoptic maps to calculate weak-field shifts for each latitude bin of each synoptic map, and thereby constructed a time–latitude butterfly diagram for shifts. We also calculated butterfly diagrams for skewness for all field values and for weak field values only. Results. The weak-field shifts and (full-field) skewness depict a similar spatial–temporal solar cycle evolution to that of the large-scale surface magnetic field. The field distribution has a systematic non-zero weak-field shift and a large skewness already at (and after) the emergence of the active region, even at the highest resolution. We find evidence for coalescence of opposite-polarity fields during the surge evolution. This is clearly more effective at the supergranulation scale. However, a similar dependence of magnetic field coalescence on spatial resolution was not found in the unipolar regions around the poles. Conclusions. Our results give evidence for the preference of even the weakest field elements toward the prevailing magnetic polarity since the emergence of an active region, and for a systematic coalescence of stronger magnetic fields of opposite polarities to produce weak fields during surge evolution and at the poles. We also find that the supergranulation process is reduced or turned off in the unipolar regions around the poles. These observations improve the understanding not only of the development of the weakest magnetic field elements, but also of the dynamics of magnetic fields at large, and even of processes below the solar surface.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


1977 ◽  
Vol 4 (2) ◽  
pp. 241-250 ◽  
Author(s):  
N. O. Weiss

One of the most exciting developments in solar physics over the past eight years has been the success of ground based observers in resolving features with a scale smaller than the solar granulation. In particular, they have demonstrated the existence of intense magnetic fields, with strengths of up to about 1600G. Harvey (1976) has just given an excellent summary of these results.In solar physics, theory generally follows observations. Inter-granular magnetic fields had indeed been expected but their magnitude came as a surprise. Some problems have been discussed in previous reviews (Schmidt, 1968, 1974; Weiss, 1969; Parker, 1976d; Stenflo, 1976) and the new observations have stimulated a flurry of theoretical papers. This review will be limited to the principal problems raised by these filamentary magnetic fields. I shall discuss the interaction of magnetic fields with convection in the sun and attempt to answer such questions as: what is the nature of the equilibrium in a flux tube? how are the fields contained? what determines their stability? how are such strong fields formed and maintained? and what limits the maximum field strength?


1971 ◽  
Vol 43 ◽  
pp. 609-615 ◽  
Author(s):  
G. Daigne ◽  
M. F. Lantos-Jarry ◽  
M. Pick

It is possible to deduce information concerning large scale coronal magnetic field patterns from the knowledge of the location of radioburst sources.As the method concerns active centers responsible for corpuscular emission, the knowledge of these structures may have important implications in the understanding of corpuscular propagation in the corona and in the interplanetary medium.


1976 ◽  
Vol 71 ◽  
pp. 113-118
Author(s):  
P. Ambrož

The measurement of the magnitude of the limb effect was homogenized in time and a recurrent period of maxima of 27.8 days was found. A relation was found between the maximum values of the limb effect of the redshift, the boundaries of polarities of the interplanetary magnetic field, the characteristic large-scale distribution of the background magnetic fields and the complex of solar activity.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 360-364
Author(s):  
Rim Fares

AbstractIn Sun-like stars, magnetic fields are generated in the outer convective layers. They shape the stellar environment, from the photosphere to planetary orbits. Studying the large-scale magnetic field of those stars enlightens our understanding of the field properties and gives us observational constraints for field generation dynamo models. It also sheds light on how “normal” the Sun is among Sun-like stars. In this contribution, I will review the field properties of Sun-like stars, focusing on solar twins and planet hosting stars. I will discuss the observed large-scale magnetic cycles, compare them to stellar activity cycles, and link that to what we know about the Sun. I will also discuss the effect of large-scale stellar fields on exoplanets, exoplanetary emissions (e.g. radio), and habitability.


2019 ◽  
Vol 627 ◽  
pp. A11
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
L. Bertello ◽  
A. Yeates ◽  
...  

Aims. The evolution of the photospheric magnetic field has only been regularly observed since the 1970s. The absence of earlier observations severely limits our ability to understand the long-term evolution of solar magnetic fields, especially the polar fields that are important drivers of space weather. Here, we test the possibility to reconstruct the large-scale solar magnetic fields from Ca II K line observations and sunspot magnetic field observations, and to create synoptic maps of the photospheric magnetic field for times before modern-time magnetographic observations. Methods. We reconstructed active regions from Ca II K line synoptic maps and assigned them magnetic polarities using sunspot magnetic field observations. We used the reconstructed active regions as input in a surface flux transport simulation to produce synoptic maps of the photospheric magnetic field. We compared the simulated field with the observed field in 1975−1985 in order to test and validate our method. Results. The reconstruction very accurately reproduces the long-term evolution of the large-scale field, including the poleward flux surges and the strength of polar fields. The reconstruction has slightly less emerging flux because a few weak active regions are missing, but it includes the large active regions that are the most important for the large-scale evolution of the field. Although our reconstruction method is very robust, individual reconstructed active regions may be slightly inaccurate in terms of area, total flux, or polarity, which leads to some uncertainty in the simulation. However, due to the randomness of these inaccuracies and the lack of long-term memory in the simulation, these problems do not significantly affect the long-term evolution of the large-scale field.


2005 ◽  
Vol 438 (3) ◽  
pp. 1067-1082 ◽  
Author(s):  
R. Knaack ◽  
J. O. Stenflo ◽  
S. V. Berdyugina
Keyword(s):  

1998 ◽  
Vol 167 ◽  
pp. 442-445
Author(s):  
Dirk K. Callebaut ◽  
Valentine I. Makarov ◽  
Ksenia S. Tavastsherna

AbstractThe zonal distribution of prominences, their poleward migration from the sunspot zone to the poles, the polar magnetic field reversals and a correlation of the mean latitude of filament bands at minimum activity with the maximum of Wolf number in the next cycle are briefly discussed for the period 1880–1995. The need for research on the longterm latitude distribution of the prominences is emphasized. New results concerning long-term variations of the torsional oscillations of the Sun and quasi-periodic oscillations of the latitude zonal boundaries from an analysis of Hα charts (1915–1990) are given.


Sign in / Sign up

Export Citation Format

Share Document