scholarly journals The Core of a Quiescent Cloud, L183

1980 ◽  
Vol 87 ◽  
pp. 91-92
Author(s):  
C. M. Walmsley ◽  
H. Ungerechts ◽  
G. Winnewisser

Simultaneous observation of the J,K=1,1 and 2,2 inversion transitions of ammonia (NH3) with high spatial resolution (≲1 arc min) offers a powerful method of probing the core region of interstellar clouds for evidence of molecular clumping and of prevailing physical conditions which could lead to star formation. We have therefore used the Effelsberg 100-m radiotelescope to make an extensive study of the central region of the nearby dark dust cloud L183 (also known as L134N) in the NH3 (1,1) transition; the spatial resolution was 40 arcsec. The core region as mapped in the NH3 (1,1) transition with a velocity resolution of 0.08 km s-1 consists of two elongated condensations separated by about 2 arcmin in north-south direction (see Fig. 1). The central part of the NH3 cloud has an approximate dimension of 6′ (N-S) by 2′ (E-W) corresponding to a linear extent of 0.17 × 0.06 pc at an assumed distance of 100 pc. The measured velocity structure of the NH3 cloud seems to reflect the double peaked nature of the cloud in that it increases from 2.30 km s-1 in the south to about 2.5 km s-1 at the northern end of the southern NH3 peak, and then decreases again to 2.3 km s-1 towards the north. The intrinsic linewidths of NH3 (corrected for hyperfine blending) do not vary significantly with position and are between 0.2 and 0.3 km s-1. The two ammonia peaks are part of a central molecular ridge from which we have observed NH3 (2,2) emission at 9 positions (see Fig. 1). The rotation temperature T21 as determined from the optical depths of the (1,1) and (2,2) transitions is ∼9K for all positions, and hence the kinetic temperature Tkin seems close to this value as well, i.e. ∼10K throughout the central part of L183. A more detailed account is being publsihed elsewhere (Ungerechts, Walmsley and Winnewisser).

2012 ◽  
Vol 25 (11) ◽  
pp. 3953-3969 ◽  
Author(s):  
Cuauhtémoc Turrent ◽  
Tereza Cavazos

In this study the results of two regional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulations forced at their boundaries with low-pass-filtered North American Regional Reanalysis (NARR) composite fields from which synoptic-scale variability was removed are presented. The filtered NARR data are also assimilated into the inner domain through the use of field nudging. The purpose of this research is to investigate wet and dry onset modes in the core region of the North American monsoon (NAM). Key features of the NAM that are present in the NARR fields and assimilated into the regional simulations include the position of the midlevel anticyclone, low-level circulation over the Gulf of California, and moisture flux patterns into the core monsoon region, for which the eastern Pacific is the likely primary source of moisture. The model develops a robust diurnal cycle of deep convection over the peaks of the Sierra Madre Occidental (SMO) that results solely from its radiation scheme and internal dynamics, in spite of the field nudging. The wet onset mode is related to a regional land–sea thermal contrast (LSTC) that is ~2°C higher than in the dry mode, and is further characterized by a northward-displaced midlevel anticyclone, a stronger surface pressure gradient along the Gulf of California, larger mean moisture fluxes into the core region from the eastern Pacific, a stronger diurnal cycle of deep convection, and the more northward distribution of precipitation along the axis of the SMO. A proposed regional LSTC mechanism for NAM onset interannual variability is consistent with the differences between both onset modes.


1963 ◽  
Vol 5 (2) ◽  
pp. 177-211
Author(s):  
James Becket

Of all the generalizations about Chile, those dealing with geography are the most accurate. Geographical facts have given shape and character to Chilean life and Chilean problems. Nature gave the heart of Chile patches of excellent soil and a climate kind to man. But this central valley is isolated, bounded on the north by desert, the east by towering mountains, the west by a cold and tempestuous ocean, and the south by the end of the world. Ownership of the land has been the keystone of Chilean history, and the fertile land is in the core region of the nation. There, in Mediterranean Chile, live three-quarters of the nation's population, there resides the political power in a unitary republic in which the president appoints provincial governors and there are no provincial assemblies, there are owned and managed the enterprises of north and south.


Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


1996 ◽  
Vol 175 ◽  
pp. 71-72
Author(s):  
F. Mantovani ◽  
W. Junor ◽  
M. Bondi ◽  
L. Padrielli ◽  
W. Cotton ◽  
...  

Recently we focussed our attention on a sample of Compact Steep-spectrum Sources (CSSs) selected because of the large bent radio jets seen in the inner region of emission. The largest distortions are often seen in sources dominated by jets, and there are suggestions that this might to some extent be due to projection effects. However, superluminal motion is rare in CSSs. The only case we know of so far is 3C147 (Alef at al. 1990) with a mildly superluminal speed of ≃ 1.3v/c. Moreover, the core fractional luminosity in CSSs is ≃ 3% and ≤ 0.4% for quasars and radio galaxies respectively. Similar values are found for large size radio sources i.e. both boosting and orientations in the sky are similar for the two classes of objects. An alternative possibility is that these bent-jet sources might also be brightened by interactions with the ambient media. There are clear indications that intrinsic distortions due to interactions with a dense inhomogeneous gaseous environment play an important role. Observational support comes from the large RMs found in CSSs (Taylor et al. 1992; Mantovani et al. 1994; Junor et al. these proc.) and often associated with strong depolarization (Garrington & Akujor, t.p.). The CSSs also have very luminous Narrow Line Regions emission, with exceptional velocity structure (Gelderman, t.p.).


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Edwards ◽  
Pierre Hélaouët ◽  
Eric Goberville ◽  
Alistair Lindley ◽  
Geraint A. Tarling ◽  
...  

AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.


1984 ◽  
Vol 108 ◽  
pp. 257-258
Author(s):  
Michael Rosa ◽  
Jorge Melnick ◽  
Preben Grosbol

The massive H II region NGC 3603 is the closest galactic counterpart to the giant LMC nebula 30 Dor. Walborn (1973) first compared the ionizing OB/WR clusters of the two H II regions and suggested that R 136, the unresolved luminous WR + 0 type central object of 30 Dor, might be a multiple system like the core region of NGC 3603. Suggestions that the dominant component of R 136, i.e. R 136A, might be either a single or a very few supermassive and superluminous stars (Schmidt-Kaler and Feitzinger 1982, Savage et al. 1983) have recently been disputed by Moffat and Seggewiss (1983) and Melnick (1983), who have presented spectroscopic and photometric evidence to support the hypothesis of an unresolved cluster of stars. We have extended Walborn's original comparison of the apparent morphology of the two clusters by digital treatment of the images to simulate how the galactic cluster would look like if it were located in the LMC


Sign in / Sign up

Export Citation Format

Share Document