scholarly journals Polar Wandering and Mantle Convection

1972 ◽  
Vol 48 ◽  
pp. 212-214 ◽  
Author(s):  
H. Takeuchi ◽  
N. Sugi

According to the mantle convection theory, mantle materials come up to the surface of the Earth at the mid-oceanic ridge system, go off in two horizontal directions, and finally at the trench and orogenic belt system they return to the interior of the Earth. We assume no return flow in the deeper part of the mantle and calculate the change of products of inertia of the Earth due to the above mass transfer. The polar wandering thus calculated is towards the direction of about 90° east and its absolute value is about 0.9 × 10−2 s/yr.

2016 ◽  
Vol 53 (11) ◽  
pp. 1103-1120 ◽  
Author(s):  
W.G. Ernst ◽  
Norman H. Sleep ◽  
Tatsuki Tsujimori

Intense devolatilization and chemical-density differentiation attended accretion of planetesimals on the primordial Earth. These processes gradually abated after cooling and solidification of an early magma ocean. By 4.3 or 4.2 Ga, water oceans were present, so surface temperatures had fallen far below low-pressure solidi of dry peridotite, basalt, and granite, ∼1300, ∼1120, and ∼950 °C, respectively. At less than half their T solidi, rocky materials existed as thin lithospheric slabs in the near-surface Hadean Earth. Stagnant-lid convection may have occurred initially but was at least episodically overwhelmed by subduction because effective, massive heat transfer necessitated vigorous mantle overturn in the early, hot planet. Bottom-up mantle convection, including voluminous plume ascent, efficiently rid the Earth of deep-seated heat. It declined over time as cooling and top-down lithospheric sinking increased. Thickening and both lateral extensional + contractional deformation typified the post-Hadean lithosphere. Stages of geologic evolution included (i) 4.5–4.4 Ga, magma ocean overturn involved ephemeral, surficial rocky platelets; (ii) 4.4–2.7 Ga, formation of oceanic and small continental plates were obliterated by return mantle flow prior to ∼4.0 Ga; continental material gradually accumulated as largely sub-sea, sialic crust-capped lithospheric collages; (iii) 2.7–1.0 Ga, progressive suturing of old shields + younger orogenic belts led to cratonal plates typified by emerging continental freeboard, increasing sedimentary differentiation, and episodic glaciation during transpolar drift; onset of temporally limited stagnant-lid mantle convection occurred beneath enlarging supercontinents; (iv) 1.0 Ga–present, laminar-flowing asthenospheric cells are now capped by giant, stately moving plates. Near-restriction of komatiitic lavas to the Archean, and appearance of multicycle sediments, ophiolite complexes ± alkaline igneous rocks, and high-pressure–ultrahigh-pressure (HP–UHP) metamorphic belts in progressively younger Proterozoic and Phanerozoic orogens reflect increasing negative buoyancy of cool oceanic lithosphere, but decreasing subductability of enlarging, more buoyant continental plates. Attending supercontinental assembly, density instabilities of thickening oceanic plates began to control overturn of suboceanic mantle as cold, top-down convection. Over time, the scales and dynamics of hot asthenospheric upwelling versus lithospheric foundering + mantle return flow (bottom-up plume-driven ascent versus top-down plate subduction) evolved gradually, reflecting planetary cooling. These evolving plate-tectonic processes have accompanied the Earth’s thermal history since ∼4.4 Ga.


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


Author(s):  
Roy Livermore

Despite the dumbing-down of education in recent years, it would be unusual to find a ten-year-old who could not name the major continents on a map of the world. Yet how many adults have the faintest idea of the structures that exist within the Earth? Understandably, knowledge is limited by the fact that the Earth’s interior is less accessible than the surface of Pluto, mapped in 2016 by the NASA New Horizons spacecraft. Indeed, Pluto, 7.5 billion kilometres from Earth, was discovered six years earlier than the similar-sized inner core of our planet. Fortunately, modern seismic techniques enable us to image the mantle right down to the core, while laboratory experiments simulating the pressures and temperatures at great depth, combined with computer modelling of mantle convection, help identify its mineral and chemical composition. The results are providing the most rapid advances in our understanding of how this planet works since the great revolution of the 1960s.


Eos ◽  
1994 ◽  
Vol 75 (29) ◽  
pp. 325 ◽  
Author(s):  
Robert S. Detrick ◽  
Susan E. Humphris
Keyword(s):  

Eos ◽  
2002 ◽  
Vol 83 (27) ◽  
pp. 295
Author(s):  
Michael Manga
Keyword(s):  

2021 ◽  
Author(s):  
Lucie Tajcmanova ◽  
Yury Podladchikov ◽  
Evangelos Moulas

<p>Quantifying natural processes that shape our planet is a key to understanding the geological observations. Many phenomena in the Earth are not in thermodynamic equilibrium. Cooling of the Earth, mantle convection, mountain building are examples of dynamic processes that evolve in time and space and are driven by gradients. During those irreversible processes, entropy is produced. In petrology, several thermodynamic approaches have been suggested to quantify systems under chemical and mechanical gradients. Yet, their thermodynamic admissibility has not been investigated in detail. Here, we focus on a fundamental, though not yet unequivocally answered, question: which thermodynamic formulation for petrological systems under gradients is appropriate – mass or molar?  We provide a comparison of both thermodynamic formulations for chemical diffusion flux, applying the positive entropy production principle as a necessary admissibility condition. Furthermore, we show that the inappropriate solution has dramatic consequences for understanding the key processes in petrology, such as chemical diffusion in the presence of stress gradients.</p>


2020 ◽  
Vol 117 (45) ◽  
pp. 27899-27905
Author(s):  
Izumi Mashino ◽  
Motohiko Murakami ◽  
Nobuyoshi Miyajima ◽  
Sylvain Petitgirard

Determination of the chemical composition of the Earth’s mantle is of prime importance to understand the evolution, dynamics, and origin of the Earth. However, there is a lack of experimental data on sound velocity of iron-bearing Bridgmanite (Brd) under relevant high-pressure conditions of the whole mantle, which prevents constraints on the mineralogical model of the lower mantle. To uncover these issues, we have conducted sound-velocity measurement of iron-bearing Brd in a diamond-anvil cell (DAC) up to 124 GPa using Brillouin scattering spectroscopy. Here we show that the sound velocities of iron-bearing Brd throughout the whole pressure range of lower mantle exhibit an apparent linear reduction with the iron content. Our data fit remarkably with the seismic structure throughout the lower mantle with Fe2+-enriched Brd, indicating that the greater part of the lower mantle could be occupied by Fe2+-enriched Brd. Our lower-mantle model shows a distinctive Si-enriched composition with Mg/Si of 1.14 relative to the upper mantle (Mg/Si = 1.25), which implies that the mantle convection has been inefficient enough to chemically homogenize the Earth’s whole mantle.


On the hypothesis that the Earth consists of an imperfectly conducting sphere surrounded by infinite homogeneous dielectric, I have recently obtained a complete solution (in a form adapted for numerical computation) of the problem of determining the effect at a distant point of the Earth’s surface due to a Hertzian oscillator emitting waves of a definite frequency. Previous investigators had obtained approximations (some of which were incorrect) to the dominant terms of the series which represents the effect due to the Earth, but the earlier approximations cease to be valid in the neighbourhood of the antipodes of the transmitter. On this hypothesis the absolute value of the Hertzian function (with the time-factor suppressed) is roughly proportional to (sin θ ) -½ exp (- 23⋅94 λ -⅓ θ ), where λ is the wavelength measured in kilometres, θ and is the angular distance from the transmitter. When θ is nearly equal to π, the factor (sin θ ) -½ has to be suppressed. This formula does not agree with results obtained experimentally. The numerical factor 23⋅94 is much too large, so that, as θ increases, the magnetic force decays much less rapidly than the theory indicates; and it has also been suggested on experimental grounds that the actual state of affairs is represented much more closely when the factor λ -⅓ is replaced by the factor λ -½ .


Sign in / Sign up

Export Citation Format

Share Document