scholarly journals Chemical Abundances and Hierarchical Clustering

2004 ◽  
Vol 217 ◽  
pp. 264-265
Author(s):  
P. B. Tissera ◽  
D.G. Lambas

In this contribution we study the chemical enrichment of the interstellar medium and stellar population of the building blocks of current typical galaxies in the field, in cosmological hydrodynamics simulations. The simulations include detailed modeling of chemical enrichment by SNIa and SNII In our simulations the missing metal problem is caused by chemical elements being locked up in stars, in the central regions (or bulges) mainly. Supernova energy feedback could help to reduce this concentration by expelling metals to the intergalactic medium.

2009 ◽  
Vol 5 (S266) ◽  
pp. 157-160
Author(s):  
D. Yong ◽  
J. Meléndez ◽  
K. Cunha ◽  
A. I. Karakas ◽  
J. E. Norris ◽  
...  

AbstractWe present abundance measurements in the tidally disrupted globular cluster NGC 6712. In this cluster, there are large star-to-star variations of the light elements C, N, O, F and Na. While such abundance variations are seen in every well-studied globular cluster, they are not found in field stars and indicate that clusters like NGC 6712 cannot provide many field stars and/or field stars do not form in environments with chemical-enrichment histories like those of NGC 6712. Preliminary analysis of NGC 5466, another tidally disrupted cluster, suggests little (if any) abundance variation for O and Na and the abundance ratios [X/Fe] are comparable to field stars at the same metallicity. Therefore, globular clusters like NGC 5466 may have been Galactic building blocks.


2007 ◽  
Vol 5 ◽  
pp. 399-405 ◽  
Author(s):  
R. Beck

Abstract. The origin of magnetic fields in stars, galaxies and clusters is an open problem in astrophysics. The next-generation radio telescopes Low Frequency Array (LOFAR) and Square Kilometre Array (SKA) will revolutionize the study of cosmic magnetism. "The origin and evolution of cosmic magnetism" is a key science project for SKA. The planned all-sky survey of Faraday rotation measures (RM) at 1.4 GHz will be used to model the structure and strength of the magnetic fields in the intergalactic medium, the interstellar medium of intervening galaxies, and in the Milky Way. A complementary survey of selected regions at around 200 MHz is planned as a key project for LOFAR. Spectro-polarimetry applied to the large number of spectral channels available for LOFAR and SKA will allow to separate RM components from distinct foreground and background regions and to perform 3-D Faraday tomography of the interstellar medium of the Milky Way and nearby galaxies. – Deep polarization mapping with LOFAR and SKA will open a new era also in the observation of synchrotron emission from magnetic fields. LOFAR's sensitivity will allow to map the structure of weak, extended magnetic fields in the halos of galaxies, in galaxy clusters, and possibly in the intergalactic medium. Polarization observations with SKA at higher frequencies (1–10 GHz) will show the detailed magnetic field structure within the disks and central regions of galaxies, with much higher angular resolution than present-day radio telescopes.


2020 ◽  
Vol 498 (3) ◽  
pp. 3703-3712 ◽  
Author(s):  
Mattis Magg ◽  
Thomas Nordlander ◽  
Simon C O Glover ◽  
Camilla J Hansen ◽  
Miho Ishigaki ◽  
...  

ABSTRACT To date no metal-free stars have been identified by direct observations. The most common method of constraining their properties is searching the spectra of the most metal-poor stars for the chemical elements created in the first stars and their supernova (SN). In this approach, modelled SN yields are compared to the observed abundance patterns in extremely metal-poor stars. The method typically only uses the abundance ratios, i.e. the yields are diluted to the observed level. Following the usual assumption of spherical symmetry we compute a simple lower limit of the mass an SN can mix with and find that it is consistent with all published simulations of early chemical enrichment in the interstellar medium. For three different cases, we demonstrate that this dilution limit can change the conclusions from the abundance fitting. There is a large discrepancy between the dilution found in simulations of SN explosions in minihaloes and the dilution assumed in many abundance fits. Limiting the dilution can significantly alter the likelihood of which supernovae are possible progenitors of observed CEMP-no stars. In particular, some of the faint, very low yield SNe, which have been suggested as models for the abundance pattern of SMSS0313−6708, cannot explain the measured metal abundances, as their predicted metal yields are too small by two orders of magnitude. Altogether, the new dilution model presented here emphasizes the need to better understand the mixing and dilution behaviour of aspherical SNe.


2004 ◽  
Vol 217 ◽  
pp. 168-169
Author(s):  
W. J. G de Blok ◽  
F. Walter

We present wide-field optical imaging covering the entire neutral hydrogen disc of the Local Group dwarf galaxy NGC 6822. These observations reveal the presence of numerous young stars at large galactocentric radii. The extended distribution of young stars implies that stars do form in the outer disks of dwarf galaxies; the HI is not necessarily much more extended than the stellar population. This finding has important consequences for the chemical enrichment of the interstellar medium throughout dwarf galaxies.


2020 ◽  
Vol 643 ◽  
pp. A12
Author(s):  
G. Casali ◽  
L. Magrini ◽  
A. Frasca ◽  
A. Bragaglia ◽  
G. Catanzaro ◽  
...  

Context. Open clusters are excellent tracers of the chemical evolution of the Galactic disc. The spatial distribution of their elemental abundances, through the analysis of high-quality and high-resolution spectra, provides insight into the chemical evolution and mechanisms of element nucleosynthesis in regions characterised by different conditions (e.g. star formation efficiency and metallicity). Aims. In the framework of the Stellar Population Astrophysics (SPA) project, we present new observations and spectral analysis of four sparsely studied open clusters located in the solar neighbourhood, namely Collinder 350, Gulliver 51, NGC 7044, and Ruprecht 171. Methods. We exploit the HARPS-N spectrograph at the TNG telescope to acquire high-resolution optical spectra for 15 member stars of four clusters. We derive stellar parameters (Teff, log g, [Fe/H] and ξ) using both the equivalent width (EW) analysis and the spectral fitting technique. We compute elemental abundances for light, α-, iron-peak, and n-capture elements using the EW measurement approach. We investigate the origin of the correlation between metallicity and stellar parameters derived with the EW method for the coolest stars of the sample (Teff <  4300 K). The correlation is likely due to the challenging continuum setting and to a general inaccuracy of model atmospheres used to reproduce the conditions of very cool giant stars. Results. We locate the properties of our clusters in the radial distributions of metallicity and abundance ratios, comparing our results with clusters from the Gaia-ESO and APOGEE surveys. We present the [X/Fe]−[Fe/H] and [X/Fe]−RGC trends for elements in common between the two surveys. Finally, we derive the C and Li abundances as a function of the evolutionary phase and compare them with theoretical models. Conclusions. The SPA survey, with its high-resolution spectra, allows us to fully characterise the chemistry of nearby clusters. With a single set of spectra, we provide chemical abundances for a variety of chemical elements, which are comparable to those obtained in two of the largest surveys combined. The metallicities and abundance ratios of our clusters fit very well in the radial distributions defined by the recent literature, reinforcing the importance of star clusters to outline the spatial distribution of abundances in our Galaxy. Moreover, the abundances of C and Li, modified by stellar evolution during the giant phase, agree with evolutionary prescriptions (rotation-induced mixing) for their masses and metallicities.


1993 ◽  
Vol 155 ◽  
pp. 572-572
Author(s):  
C.Y. Zhang

We have selected a sample of planetary nebulae, for which the core masses are determined using distance-independent parameters (Zhang and Kwok 1992). The chemical abundances of He, N, O, and C are taken from the literature for them. Relationships of the ratios of He/H, N/O, and C/O with various stellar parameters of planetary nebulae (PN), such as the core mass, the mass of the core plus the ionized nebular gas, the stellar age and temperature, are examined. It is found that the N/O increases with increasing mass, while the C/O first increases and then decreases with the core mass. No strong correlation seems to exist between the He/H and the core mass. A correlation of the N/O and He/H with the stellar temperature exists. The current dredge-up theory for the progenitor AGB stars cannot satisfactorily account for these patterns of chemical enrichment in PN. Furthermore, the correlations of the N/O and He/H with the stellar age and temperature indicate that besides the dredge-ups in the RG and AGB stages, physical processes that happen in the planetary nebula stage may also play a role in forming the observed patterns of chemical enrichment in the planetary nebulae.


1980 ◽  
Vol 5 ◽  
pp. 191-191
Author(s):  
V. C. Rubin

For a sample of 21 Sc galaxies with a wide range of luminosities, of radii, and of masses, W. K. Ford and I have obtained spectra and determined rotation curves. By their kinematical behavior in their central regions, the Sc’s can be separated into two groups. Some galaxies, generally small and of low luminosity, have shallow central velocity gradients, reflecting their low central masses and densities. Other galaxies, most often large ones of high luminosity, have steep central velocity gradients. One reason this separation by central velocity gradients is of interest is because these galaxies exhibit other significant spectral differences which go hand-in-hand with the kinematical differences.The small, low luminosity galaxies show emission lines of Hα and [NII], with nuclear Ha sharp and stronger than [NII], and little or no stellar nuclear continuum, just as conventional HII regions. In contrast, the high luminosity galaxies show broad nuclear emission, with [NII] stronger than Ha. These galaxies have a strong red stellar continuum, arising from a red stellar population. The cause of the Hα[NII] intensity reversal in the nuclei of some galaxies remains unknown. However, the strong [NII] emission in generally high luminosity galaxies with massive nuclei, nuclei which show strong red continua, suggests that [Nil] intensity correlates with nuclear luminosity, and in turn with the density and velocity properties of the nuclear populations. We would expect high velocity dispersions and high bulge luminosities for galaxies with strong nuclear [NII] and steep central velocity gradients.


Author(s):  
Francisco Prosdocimi ◽  
Savio Torres Farias ◽  
Marco V José

The origin of life was a cosmic event happened on primitive Earth. A critical problem to better understand the origins of life in Earth is to glimpse in which chemical scenarios the basic building blocks of biological molecules could be produced. Classic works in pre-biotic chemistry frequently considered early Earth as a homogeneous atmosphere constituted by chemical elements such as methane (CH4), ammonia (NH3), water (H2O), hydrogen (H2) and hydrogen sulfide (H2S). Under that scenario, Stanley Miller was capable to produce amino acids and solved the question about the origin of proteins. Conversely, the origin of nucleic acids has tricked scientists for decades as nucleotides are complex though necessary molecules to allow the existence of life. Here we review possible chemical scenarios that allowed not only the formation of nucleotides but also other significant biomolecules. We aim to provide a theoretical solution for the origin of biomolecules at specific sites named &ldquo;Prebiotic Chemical Refugia&rdquo;. A prebiotic chemical refugium should therefore be understood as a geographic site in prebiotic Earth on which certain chemical elements were accumulated in higher proportion than expected, facilitating the production of basic biomolecules. Plus, this higher proportion should not be understood as static, but dynamic; once the physicochemical conditions of our planet changed periodically. This different concentration of elements, together with geochemical and astronomical changes along days, synodic months and years provided somewhat periodic changes in temperature, pressure, electromagnetic fields, and conditions of humidity; among other features. Recent and classic works suggesting most likely prebiotic refugia on which the main building blocks of biological molecules might be accumulated are reviewed and discussed.


2003 ◽  
Vol 209 ◽  
pp. 431-438
Author(s):  
Arturo Manchado

The morphology of a complete sample of 255 northern planetary nebulae (PNe) was studied and correlated with the nebular parameters. PNe were classified according to the following scheme: round (R, 25%), elliptical (E, 58% of the sample), and bipolar (B, 17%). Bipolars include the quadrupolar subsample. A subclass of pointsymmetric and multiple shell PNe was also found. Nine per cent of ellipticals and 46% of bipolars were found to be pointsymmetric. Thirty-five per cent of the round and 22% of the elliptical PNe were found to be multiple shell PNe (MSPNe). Galactic latitude was found to be different for each morphological class (|b| = 8°, 5° and 2° for types R, E, and B, respectively). Galactic height was also found to vary: 〈z〉 = 647, 276, and 100 pc for categories R, E, and B, respectively. Segregation according to the chemical abundances was also found, with helium abundances of 0.10, 0.12, and 0.14 and N/O of 0.21, 0.31, and 1.33 for types R, E, and B, respectively. Both galactic distribution and chemical abundances point to a different stellar population for each morphological class, the round and bipolar types being the result of low and high stellar mass progenitor evolution, respectively.


2013 ◽  
Vol 9 (S296) ◽  
pp. 378-379 ◽  
Author(s):  
Hui Zhu ◽  
Wenwu Tian

AbstractSupernova remnants (SNRs) play a key role in understanding supernovae explosion mechanisms, exploring the likely sources of Galactic cosmic rays and the chemical enrichment of interstellar medium (ISM). Reliable distance determinations to Galactic SNRs are key to obtain their basic parameters, such as size, age, explosion energy, which helps us to study their environment and interstellar medium. We review the methods to determine the distances to SNRs and highlight the kinematic distance measurement by Hi absorption and CO emission observations.


Sign in / Sign up

Export Citation Format

Share Document