scholarly journals Sulfur, Chlorine & Argon Abundances in Galactic PNe

2003 ◽  
Vol 209 ◽  
pp. 372-372
Author(s):  
Karen B. Kwitter ◽  
Richard B.C. Henry

We report first results from our extensive study of S, Cl and Ar abundances in a large sample (>60) of primarily Type II planetary nebulae (PNe) in the Galaxy (see Kwitter & Henry 2001, ApJ, 562, 804). Ratios of S/O, Cl/O, and Ar/O constitute important tests of differential nucleosynthesis of these elements and serve as strict constraints on massive star yield predictions. The use of PNe to measure the original stellar abundances of S, Cl, and Ar is possible because PN progenitors, intermediate-mass stars between 1 and 8M⊙, lack sufficient mass to synthesize these elements. Therefore, their abundances measured in the nebulae at present reflect accurately the original stellar abundances.Here we present results from new ground-based optical spectra of planetary nebulae extending from 3600–9600Å. The observed spectral range includes the strong near-infrared lines of [S III] λλ9069,9532, which allowed us to extensively test their effectiveness as an indicator of S++. We find that the S++ abundances derived from these lines are quite consistent with those derived from the λ6312 line when the latter is well measured. In addition, we find that the atmospheric absorption affecting the near-infrared lines can be minimized by using in the calculation whichever of the pair is less affected: if the observed ratio of λ9532/λ9069 exceeds 2.48, the theoretical value, we use λ9532; if we observe a ratio <2.48, we use λ9069 instead. We also introduce a new, model-tested ionization correction factor for sulfur that includes the latest atomic data and the effects of matter-boundedness.For the northern subsample we find the following averages: S/O=1.2E-2±0.71E-2, Cl/O=3.3E-4±1.6E-4, Ar/O=5.0E-3±1.9E-3.Subsequent papers in this series will present the full analysis and compare our derived abundances of S, Cl, and Ar with nucleosynthesis predictions from massive stars. (A companion paper in this volume by Milingo, Henry & Kwitter discusses the southern subset observed at CTIO; see also Milingo, J.B., Kwitter, K.B., Henry, R.B.C., & Cohen, R.E. 2002, ApJS, in press; Milingo, J.B., Henry, R.B.C., & Kwitter, K.B. 2002, ApJS, 2002, in press.)

Author(s):  
L. V. Gramajo ◽  
T. Palma ◽  
D. Minniti ◽  
R. K. Saito ◽  
J. J. Clariá ◽  
...  

Abstract We present the first results obtained from an extensive study of eclipsing binary (EB) system candidates recently detected in the VISTA Variables in the Vía Láctea (VVV) near-infrared (NIR) Survey. We analyse the VVV tile d040 in the southern part of the Galactic disc wherein the interstellar reddening is comparatively low, which makes it possible to detect hundreds of new EB candidates. We present here the light curves and the determination of the geometric and physical parameters of the best candidates found in this ‘NIR window’, including 37 contact, 50 detached, and 13 semi-detached EB systems. We infer that the studied systems have an average of the $K_s$ amplitudes of $0.8$ mag and a median period of 1.22 days where, in general, contact binaries have shorter periods. Using the ‘Physics Of Eclipsing Binaries’ (PHOEBE) interactive interface, which is based on the Wilson and Devinney code, we find that the studied systems have low eccentricities. The studied EBs present mean values of about 5 700 and 4 900 K for the $T_1$ and $T_2$ components, respectively. The mean mass ratio (q) for the contact EB stars is $\sim$ 0.44. This new galactic disk sample is a first look at the massive study of NIR EB systems.


1993 ◽  
Vol 155 ◽  
pp. 340-340 ◽  
Author(s):  
R.E.S. Clegg ◽  
N. A. Walton ◽  
M.J. Barlow

It is not really known how low and intermediate mass stars eject mass to form PNs. We present preliminary results from a programme of near–IR imaging, in which we study a sequence of objects, from extreme AGB stars through proto–planetaries to young, compact PNs. We aim to study the sequence of morphologies, to see where the onset of bipolar shaping occurs, and to use the IR molecular hydrogen lines to map neutral regions around ionized nebulae.


2015 ◽  
Vol 11 (S317) ◽  
pp. 304-305
Author(s):  
Denise R. Gonçalves ◽  
T. Aparício-Villegas ◽  
S. Akras ◽  
A. Cortesi ◽  
M. Borges-Fernandes ◽  
...  

AbstractThe Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow-band imaging, very wide field cosmological survey. It will last 5 years and will observe 8500 sq. deg. of the sky. There will be 54 contiguous narrow-band filters of 145Å FWHM, from 3,500 to 10,000Å. Two broad-band filters will be added at the extremes, UV and IR, plus the 3–g, r, and i– SDSS filters. Thus, J-PAS can be an important tool to search for new planetary nebulae (PNe) at the halo, increasing their numbers, because only 14 of them have been convincingly identified in the literature. Halo PNe are able to reveal precious information for the study of stellar evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense emission lines of PNe make them good objects to be searched by J-PAS. Though covering a significantly smaller sky area, data from the ALHAMBRA survey were used to test our J-PAS strategy to search for PNe. Our first results are shown in this contribution.


1998 ◽  
Vol 11 (1) ◽  
pp. 433-434
Author(s):  
I.N. Reid

The expression “low luminosity stars” is a descriptive category which spans a wide range of objects, from the oldest stellar remnants in the Galaxy (Wood) through failed stars (Jones, Gould) to the enigmatic MACHOs, discernible not in themselves but only through their effects on others (Bennet). All of these have attracted considerable attention in recent years, and significant progress has been achieved in each case, even if our understanding has failed to keep up with observations. However, it is in the area of brown dwarfs where the most dramatic results have been obtained. The existence of such objects has been predicted theoretically for well over thirty years, but predictions can fail. Thus the discovery of G1229B (Nakajima et al, 1995), an unambiguous substellar-mass object, followed by the detection of lithium in Teide 1 and Calar 3 in the Pleiades (Rebolo et al, 1996) mark a turning point in studies of brown dwarfs. The issue now is not whether they exist, but what are their properties as a class. With that in mind, a number of obvious questions arise. First, what is the most effective method of finding brown dwarfs? Both brown dwarfs and VLM stars have effective temperatures below 2500K. Hence, many surveys concentrated on searching for objects which were very red at near-infrared wavelengths, and the blue JHK colours exhibited by Gl 229B cameas something of a surprise. This should not have been the case, of course, since Tsuji (1964) predicted the presence of methane in such cool atmospheres well before the term ’brown dwarf’ was invented. Current theory, as summarised in these sessions by Tsuji and Burrows, predicts that, as one moves to lower temperatures, grain formation initially drives (J-K) redward, before grains settle below τ ~ 1 and CH4 absorption sets in. Throughout, however, the optical-to-IR colours, straddling the peak in the emergent flux distribution, become progressively redder (Reid, 1994). Those colours therefore offer the most effective means of identifying both GD 165B-like and Gl 229B-like sources - an argument reinforced by the first results from the IJK DENIS survey (Delfosse et al, 1997).


1989 ◽  
Vol 131 ◽  
pp. 63-64
Author(s):  
S. R. Pottasch ◽  
C. Esteban ◽  
A. Manchado ◽  
A. Mampaso

We present the first results of a large scale infrared search for new planetary nebulae. More than 1000 unidentified sources were selected from the IRS PSC having infrared colours similar to those of known PN's. Subsequent near-infrared photometry and optical spectroscopy will be made to investigate their precise nature. We report here one to five microns photometry of 30 such sources obtained with the 1.5-m CSM telescope (Tenerife, Spain). The preliminary results indicate that many of the observed sources have near infrared colours of heavily reddened PN's (Av greater than 30 magnitudes in some cases), while a smaller fraction could represent obscured normal stars or giants surrounded by circumstellar envelopes.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2017 ◽  
Vol 10 (1) ◽  
pp. 265-271 ◽  
Author(s):  
Alexander A. Kutepov ◽  
Ladislav Rezac ◽  
Artem G. Feofilov

Abstract. Since January 2004, the planetary Fourier spectrometer (PFS) on board the Mars Express satellite has been recording near-infrared limb spectra of high quality up to the tangent altitudes ≈ 150 km, with potential information on density and thermal structure of the upper Martian atmosphere. We present first results of our modeling of the PFS short wavelength channel (SWC) daytime limb spectra for the altitude region above 90 km. We applied a ro-vibrational non-LTE model based on the stellar astrophysics technique of accelerated lambda iteration (ALI) to solve the multi-species and multi-level CO2 problem in the Martian atmosphere. We show that the long-standing discrepancy between observed and calculated spectra in the cores and wings of 4.3 µm region is explained by the non-thermal rotational distribution of molecules in the upper vibrational states 10011 and 10012 of the CO2 main isotope second hot (SH) bands above 90 km altitude. The redistribution of SH band intensities from band branch cores into their wings is caused (a) by intensive production of the CO2 molecules in rotational states with j > 30 due to the absorption of solar radiation in optically thin wings of 2.7 µm bands and (b) by a short radiative lifetime of excited molecules, which is insufficient at altitudes above 90 km for collisions to maintain rotation of excited molecules thermalized. Implications for developing operational algorithms for massive processing of PFS and other instrument limb observations are discussed.


2021 ◽  
Vol 502 (1) ◽  
pp. 1246-1252
Author(s):  
M Zoccali ◽  
E Valenti ◽  
F Surot ◽  
O A Gonzalez ◽  
A Renzini ◽  
...  

ABSTRACT We analyse the near-infrared colour–magnitude diagram of a field including the giant molecular cloud G0.253+0.016 (a.k.a. The Brick) observed at high spatial resolution, with HAWK-I@VLT. The distribution of red clump stars in a line of sight crossing the cloud, compared with that in a direction just beside it, and not crossing it, allow us to measure the distance of the cloud from the Sun to be 7.20, with a statistical uncertainty of ±0.16 and a systematic error of ±0.20 kpc. This is significantly closer than what is generally assumed, i.e. that the cloud belongs to the near side of the central molecular zone, at 60 pc from the Galactic centre. This assumption was based on dynamical models of the central molecular zone, observationally constrained uniquely by the radial velocity of this and other clouds. Determining the true position of the Brick cloud is relevant because this is the densest cloud of the Galaxy not showing any ongoing star formation. This puts the cloud off by one order of magnitude from the Kennicutt–Schmidt relation between the density of the dense gas and the star formation rate. Several explanations have been proposed for this absence of star formation, most of them based on the dynamical evolution of this and other clouds, within the Galactic centre region. Our result emphasizes the need to include constraints coming from stellar observations in the interpretation of our Galaxy’s central molecular zone.


2009 ◽  
Vol 5 (S265) ◽  
pp. 354-355
Author(s):  
Oscar Cavichia ◽  
Roberto D. D. Costa ◽  
Walter J. Maciel

AbstractNew abundances of planetary nebulae located towards the bulge of the Galaxy are derived based on observations made at LNA (Brazil). We present accurate abundances of the elements He, N, S, O, Ar, and Ne for 56 PNe located towards the galactic bulge. The data shows a good agreement with other results in the literature, in the sense that the distribution of the abundances is similar to those works. From the statistical analysis performed, we can suggest a bulge-disk interface at 2.2 kpc for the intermediate mass population, marking therefore the outer border of the bulge and inner border of the disk.


Sign in / Sign up

Export Citation Format

Share Document