scholarly journals The Integrated Magnetic Field of the Sun Seen by the Golf Experiment

1998 ◽  
Vol 185 ◽  
pp. 225-226
Author(s):  
R.A. García ◽  
T. Roca Cortés ◽  

The secondary objective of the GOLF experiment on-board the SOHO space mission is to measure the line-of-sight component of the disk averaged magnetic field of the Sun. GOLF is an improved disk-integrated sunlight resonant scattering spectrophotometer. Using an extra fixed quarter wave plate placed at the entrance of the instrument, enables a selection of the circularly polarized solar light and therefore, the disk averaged solar line-of-sight component of the magnetic field can be obtained. Unfortunately, due to occasional malfunction of the rotating mechanisms, only a series of 26 continuous days are available. Here, the analysis of this series is presented including the value of the averaged magnetic field.


2013 ◽  
Vol 9 (S302) ◽  
pp. 220-221
Author(s):  
Adriana Válio ◽  
Eduardo Spagiari

AbstractSunspots are important signatures of the global solar magnetic field cycle. It is believed that other stars also present these same phenomena. However, today it is not possible to observe directly star spots due to their very small sizes. The method applied here studies star spots by detecting small variations in the stellar light curve during a planetary transit. When the planet passes in front of its host star, there is a chance of it occulting, at least partially, a spot. This allows the determination of the spots physical characteristics, such as size, temperature, and location on the stellar surface. In the case of the Sun, there exists a relation between the magnetic field and the spot temperature. We estimate the magnetic field component along the line-of-sight and the intensity of sunspots using data from the MDI instrument on board of the SOHO satellite. Assuming that the same relation applies to other stars, we estimate spots magnetic fields of CoRoT-2 and Kepler-17 stars.



1996 ◽  
Vol 176 ◽  
pp. 1-16
Author(s):  
Carolus J. Schrijver

Looking at the Sun forges the framework within which we try to interpret stellar observations. The stellar counterparts of spots, plages, flux tubes, chromospheres, coronae, etc., are readily invoked when attempting to interpret stellar data. This review discusses a selection of solar phenomena that are crucial to understand stellar atmospheric activity. Topics include the interaction of magnetic fields and flows, the relationships between fluxes from different temperature regimes in stellar atmospheres, the photospheric flux budget and its impact on the measurement of the dynamo strength, and the measurement of stellar differential rotation.



1991 ◽  
Vol 148 ◽  
pp. 101-102
Author(s):  
M.E. Costa ◽  
P. M. McCulloch ◽  
P. A. Hamilton

We have measured a value of 4±5m--2rad for the rotation measure of the radio pulsar PSR0529-66 in the LMC and, after allowing for the dispersion and rotation measures of our Galaxy on the pulsar's line of sight, we deduce that the magnetic field strength in the LMC is in the range 0 to 5μGauss oriented away from the Sun.



2020 ◽  
Vol 72 (2) ◽  
Author(s):  
Tetsuya Zenko ◽  
Tetsuya Nagata ◽  
Mikio Kurita ◽  
Masaru Kino ◽  
Shogo Nishiyama ◽  
...  

Abstract A new method for measuring the global magnetic field structure of the Galactic plane is presented. We have determined the near-infrared polarization of field stars around 52 Cepheids found in recent surveys toward the Galactic plane. The Cepheids are located at the galactic longitudes $-10^{\circ} \le l \le +10.^{\!\!\!\circ }5$ and latitudes $-0.^{\!\!\!\circ }22\le b \le +0.^{\!\!\!\circ }45$, and their distances are mainly in the range of 10 to 15 kpc from the Sun. Simple classification of the sightlines is made with the polarization behavior vs. $H-K_{\mathrm{S}}$ color of field stars, and typical examples of three types are presented. Then, division of the field stars in each line of sight into (a) foreground, (b) bulge, and (c) background is made with the Gaia DR2 catalog, the peak of the $H-K_{\mathrm{S}}$ color histogram, and $H-K_{\mathrm{S}}$ colors consistent with the distance of the Cepheid in the center, respectively. Differential analysis between them enables us to examine the magnetic field structure more definitely than just relying on the $H-K_{\mathrm{S}}$ color difference. In one line of sight, the magnetic field is nearly parallel to the Galactic plane and well aligned all the way from the Sun to the Cepheid position on the other side of the Galactic center. Contrary to our preconceived ideas, however, sightlines having such well-aligned magnetic fields in the Galactic plane are rather small in number. At least 36 Cepheid fields indicate random magnetic field components are significant. Two Cepheid fields indicate that the magnetic field orientation changes more than $45^{\circ }$ in the line of sight. The polarization increase per color change $\Delta P/\Delta (H-K_{\mathrm{S}})$ varies from region to region, reflecting the change in the ratio of the magnetic field strength and the turbulence strength.



1971 ◽  
Vol 43 ◽  
pp. 44-50 ◽  
Author(s):  
Thomas J. Janssens ◽  
Neal K. Baker

The Aerospace – NASA Videomagnetograph began operation one month ago, two years after components were ordered and construction began. The design grew out of a desire to obtain magnetic fields in real time using an optical filter. The aim was to study and analyze magnetic configurations and changes, quantitatively if possible, with high spatial and temporal resolution and as much sensitivity as possible. This instrument is restricted to the line-of-sight component of the magnetic field and is primarily intended for high resolution studies of selected regions of the sun. The rationale behind our approach is shown in the next section and the design details in the following.



2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.



1993 ◽  
Vol 138 ◽  
pp. 305-309
Author(s):  
Marco Landolfi ◽  
Egidio Landi Degl’Innocenti ◽  
Maurizio Landi Degl’Innocenti ◽  
Jean-Louis Leroy ◽  
Stefano Bagnulo

AbstractBroadband linear polarization in the spectra of Ap stars is believed to be due to differential saturation between σ and π Zeeman components in spectral lines. This mechanism has been known for a long time to be the main agent of a similar phenomenon observed in sunspots. Since this phenomenon has been carefully calibrated in the solar case, it can be confidently used to deduce the magnetic field of Ap stars.Given the magnetic configuration of a rotating star, it is possible to deduce the broadband polarization at any phase. Calculations performed for the oblique dipole model show that the resulting polarization diagrams are very sensitive to the values of i (the angle between the rotation axis and the line of sight) and β (the angle between the rotation and magnetic axes). The dependence on i and β is such that the four-fold ambiguity typical of the circular polarization observations ((i,β), (β,i), (π-i,π-β), (π-β,π-i)) can be removed.



JETP Letters ◽  
2015 ◽  
Vol 101 (4) ◽  
pp. 228-231
Author(s):  
A. V. Karelin ◽  
O. Adriani ◽  
G. C. Barbarino ◽  
G. A. Bazilevskaya ◽  
R. Bellotti ◽  
...  


Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Nola Redd

Radio waves are providing a new way to probe the Sun and suggest that the magnetic field of its corona may be stronger than long thought.



Sign in / Sign up

Export Citation Format

Share Document