Search activity: A key to resolving contradictions in sleep/dream investigation

2000 ◽  
Vol 23 (6) ◽  
pp. 996-999 ◽  
Author(s):  
V. S. Rotenberg

The target articles on sleep and dreaming are discussed in terms of the concept of search activity integrating different types of behavior, body resistance, REM sleep/dream functions, and the brain catecholamine system. REM sleep may be functionally sufficient or insufficient, depending on the dream scenario, the latter being more important than the physiological manifestation of REM sleep. REM sleep contributes to memory consolidation in the indirect way.[Nielsen; Revonsuo; Solms; Vertes & Eastman]

2000 ◽  
Vol 23 (6) ◽  
pp. 867-876 ◽  
Author(s):  
Robert P. Vertes ◽  
Kathleen E. Eastman

We present evidence disputing the hypothesis that memories are processed or consolidated in REM sleep. A review of REM deprivation (REMD) studies in animals shows these reports to be about equally divided in showing that REMD does, or does not, disrupt learning/memory. The studies supporting a relationship between REM sleep and memory have been strongly criticized for the confounding effects of very stressful REM deprivation techniques. The three major classes of antidepressant drugs, monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), and selective serotonin reuptake inhibitors (SSRIs), profoundly suppress REM sleep. The MAOIs virtually abolish REM sleep, and the TCAs and SSRIs have been shown to produce immediate (40–85%) and sustained (30–50%) reductions in REM sleep. Despite marked suppression of REM sleep, these classes of antidepressants on the whole do not disrupt learning/memory. There have been a few reports of patients who have survived bilateral lesions of the pons with few lingering complications. Although these lesions essentially abolished REM sleep, the patients reportedly led normal lives. Recent functional imaging studies in humans have revealed patterns of brain activity in REM sleep that are consistent with dream processes but not with memory consolidation. We propose that the primary function of REM sleep is to provide periodic endogenous stimulation to the brain which serves to maintain requisite levels of central nervous system (CNS) activity throughout sleep. REM is the mechanism used by the brain to promote recovery from sleep. We believe that the cumulative evidence indicates that REM sleep serves no role in the processing or consolidation of memory.


2021 ◽  
pp. 9-23
Author(s):  
John Zerilli

The brain exhibits an impressive degree of plasticity, even as it ages. Plasticity is really an intrinsic feature of the nervous system, not an exceptional or occasional state. Neuroplasticity comprises a family of different types of plasticity. Of these, synaptic plasticity is perhaps the best-understood variety, and it plays an important role in cortical map reorganization and memory consolidation. Cortical map plasticity is of direct relevance to any discussion of modularity. There are two types of cortical map plasticity: intramodal (within a modality) and crossmodal. Crossmodal plasticity is likely to arise from the underlying supramodal (or “metamodal”) organization of the brain.


2017 ◽  
Author(s):  
Zachariah R. Cross ◽  
Mark J. Kohler ◽  
Matthias Schlesewsky ◽  
M. Gareth Gaskell ◽  
Ina Bornkessel-Schlesewsky

AbstractWe hypothesise a beneficial influence of sleep on the consolidation of the combinatorial mechanisms underlying incremental sentence comprehension. These predictions are grounded in recent work examining the effect of sleep on the consolidation of linguistic information, which demonstrate that sleep-dependent neurophysiological activity consolidates the meaning of novel words and simple grammatical rules. However, the sleep-dependent consolidation of sentence-level combinatorics has not been studied to date. Here, we propose that dissociable aspects of sleep neurophysiology consolidate two different types of combinatory mechanisms in human language: sequence-based (order-sensitive) and dependency-based (order-insensitive) combinatorics. The distinction between the two types of combinatorics is motivated both by cross-linguistic considerations and the neurobiological underpinnings of human language. Unifying this perspective with principles of sleep-dependent memory consolidation, we posit that a function of sleep is to optimise the consolidation of sequence-based knowledge (the when) and the establishment of semantic schemas of unordered items (the what) that underpin cross-linguistic variations in sentence comprehension. This hypothesis builds on the proposal that sleep is involved in the construction of predictive codes, a unified principle of brain function that supports incremental sentence comprehension. Finally, we discuss neurophysiological measures (EEG/MEG) that could be used to test these claims, such as the quantification of neuronal oscillations, which reflect basic mechanisms of information processing in the brain.


2017 ◽  
Vol 2 (15) ◽  
pp. 9-23 ◽  
Author(s):  
Chorong Oh ◽  
Leonard LaPointe

Dementia is a condition caused by and associated with separate physical changes in the brain. The signs and symptoms of dementia are very similar across the diverse types, and it is difficult to diagnose the category by behavioral symptoms alone. Diagnostic criteria have relied on a constellation of signs and symptoms, but it is critical to understand the neuroanatomical differences among the dementias for a more precise diagnosis and subsequent management. With this regard, this review aims to explore the neuroanatomical aspects of dementia to better understand the nature of distinctive subtypes, signs, and symptoms. This is a review of English language literature published from 1996 to the present day of peer-reviewed academic and medical journal articles that report on older people with dementia. This review examines typical neuroanatomical aspects of dementia and reinforces the importance of a thorough understanding of the neuroanatomical characteristics of the different types of dementia and the differential diagnosis of them.


2010 ◽  
Vol 24 (4) ◽  
pp. 249-252 ◽  
Author(s):  
Márk Molnár ◽  
Roland Boha ◽  
Balázs Czigler ◽  
Zsófia Anna Gaál

This review surveys relevant and recent data of the pertinent literature regarding the acute effect of alcohol on various kinds of memory processes with special emphasis on working memory. The characteristics of different types of long-term memory (LTM) and short-term memory (STM) processes are summarized with an attempt to relate these to various structures in the brain. LTM is typically impaired by chronic alcohol intake but according to some data a single dose of ethanol may have long lasting effects if administered at a critically important age. The most commonly seen deleterious acute effect of alcohol to STM appears following large doses of ethanol in conditions of “binge drinking” causing the “blackout” phenomenon. However, with the application of various techniques and well-structured behavioral paradigms it is possible to detect, albeit occasionally, subtle changes of cognitive processes even as a result of a low dose of alcohol. These data may be important for the consideration of legal consequences of low-dose ethanol intake in conditions such as driving, etc.


Author(s):  
Olga Lemzyakova

Refraction of the eye means its ability to bend (refract) light in its own optical system. In a normal state, which is called emmetropia, light rays passing through the optical system of the eye focus on the retina, from where the impulse is transmitted to the visual cortex of the brain and is analyzed there. A person sees equally well both in the distance and near in this situation. However, very often, refractive errors develop as a result of various types of influences. Myopia, or short-sightedness, occurs when the light rays are focused in front of the retina as a result of passing through the optical system of the eye. In this case, a person will clearly distinguish close objects and have difficulties in seeing distant objects. On the opposite side is development of farsightedness (hypermetropia), in which the focusing of light rays occurs behind the retina — such a person sees distant objects clearly, but outlines of closer objects are out of focus. Near vision impairment in old age is a natural process called presbyopia, it develops due to the lens thickening. Both myopia and hypermetropia can have different degrees of severity. The variant, when different refractive errors are observed in different eyes, is called anisometropia. In the same case, if different types of refraction are observed in the same eye, it is astigmatism, and most often it is a congenital pathology. Almost all of the above mentioned refractive errors require correction with spectacles or use of contact lenses. Recently, people are increasingly resorting to the methods of surgical vision correction.


2018 ◽  
Vol 25 (9) ◽  
pp. 1073-1089 ◽  
Author(s):  
Santiago Vilar ◽  
Eduardo Sobarzo-Sanchez ◽  
Lourdes Santana ◽  
Eugenio Uriarte

Background: Blood-brain barrier transport is an important process to be considered in drug candidates. The blood-brain barrier protects the brain from toxicological agents and, therefore, also establishes a restrictive mechanism for the delivery of drugs into the brain. Although there are different and complex mechanisms implicated in drug transport, in this review we focused on the prediction of passive diffusion through the blood-brain barrier. Methods: We elaborated on ligand-based and structure-based models that have been described to predict the blood-brain barrier permeability. Results: Multiple 2D and 3D QSPR/QSAR models and integrative approaches have been published to establish quantitative and qualitative relationships with the blood-brain barrier permeability. We explained different types of descriptors that correlate with passive diffusion along with data analysis methods. Moreover, we discussed the applicability of other types of molecular structure-based simulations, such as molecular dynamics, and their implications in the prediction of passive diffusion. Challenges and limitations of experimental measurements of permeability and in silico predictive methods were also described. Conclusion: Improvements in the prediction of blood-brain barrier permeability from different types of in silico models are crucial to optimize the process of Central Nervous System drug discovery and development.


Author(s):  
Marcus O. Harrington ◽  
Scott A. Cairney

Abstract Purpose of Review Auditory stimulation is a technique that can enhance neural oscillations linked to overnight memory consolidation. In this review, we evaluate the impacts of auditory stimulation on the neural oscillations of sleep and associated memory processes in a variety of populations. Recent Findings Cortical EEG recordings of slow-wave sleep (SWS) are characterised by two cardinal oscillations: slow oscillations (SOs) and sleep spindles. Auditory stimulation delivered in SWS enhances SOs and phase-coupled spindle activity in healthy children and adults, children with ADHD, adults with mild cognitive impairment and patients with major depression. Under certain conditions, auditory stimulation bolsters the benefits of SWS for memory consolidation, although further work is required to fully understand the factors affecting stimulation-related memory gains. Recent work has turned to rapid eye movement (REM) sleep, demonstrating that auditory stimulation can be used to manipulate REM sleep theta oscillations. Summary Auditory stimulation enhances oscillations linked to overnight memory processing and shows promise as a technique for enhancing the memory benefits of sleep.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Guang ◽  
Halen Baker ◽  
Orilia Ben-Yishay Nizri ◽  
Shimon Firman ◽  
Uri Werner-Reiss ◽  
...  

AbstractDeep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson’s disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.


Sign in / Sign up

Export Citation Format

Share Document