Double, double, toil and trouble – fire burn, and theory bubble!

2003 ◽  
Vol 26 (4) ◽  
pp. 409-410
Author(s):  
Birgitta Dresp

Lehar's Gestalt Bubble model introduces a computational approach to holistic aspects of three-dimensional scene perception. The model as such has merit because it manages to translate certain Gestalt principles of perceptual organization into formal codes or algorithms. The mistake made in this target article is to present the model within the theoretical framework of the question of consciousness. As a scientific approach to the problem of consciousness, the Gestalt Bubble fails for several reasons. This commentary addresses three of these: (1) the terminology surrounding the concept of consciousness is not rigorously defined; (2) it is not made evident that three-dimensional scene perception requires consciousness at all; and (3) it is not clearly explained by which mechanism(s) the “picture-in-the-head,” supposedly represented in the brain, would be made available to different levels of awareness or consciousness.

2019 ◽  
Author(s):  
Nikita Agarwal ◽  
Aditi Kathpalia ◽  
Nithin Nagaraj

AbstractCharacterizing consciousness, the inner subjective feeling that is present in every experience, is a hard problem in neuroscience, but has important clinical implications. A leading neuro-scientific approach to understanding consciousness is to measure the complex causal neural interactions in the brain. Elucidating the complex causal interplay between cortical neural interactions and the subsequent network computations is very challenging. In this study, we propose a novel quantitative measure of consciousness - Network Causal Activity - using a recently proposed Compression-Complexity Causality measure to analyze electrocorticographic signals from the lateral cortex of four monkeys during two states of consciousness (awake and anaesthesia). Our results suggest that Network Causal Activity is consistently higher in the awake state as compared with anaesthesia state for all the monkeys.


2008 ◽  
Vol 100 (4) ◽  
pp. 1967-1982 ◽  
Author(s):  
Marion R. Van Horn ◽  
Kathleen E. Cullen

To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It has been proposed that the traditionally assumed “conjugate” saccadic premotor pathway does not encode conjugate commands but rather encodes monocular commands for the right or left eye during saccades. Here, we directly test this proposal by recording from the premotor neurons of the horizontal saccade generator during a dissociation task that required a vergence but no horizontal conjugate saccadic command. Specifically, saccadic burst neurons (SBNs) in the paramedian pontine reticular formation were recorded while rhesus monkeys made vertical saccades made between near and far targets. During this task, we first show that peak vergence velocities were enhanced to saccade-like speeds (e.g., >150 vs. <100°/s during saccade-free movements for comparable changes in vergence angle). We then quantified the discharge dynamics of SBNs during these movements and found that the majority of the neurons preferentially encode the velocity of the ipsilateral eye. Notably, a given neuron typically encoded the movement of the same eye during horizontal saccades that were made in depth. Taken together, our findings demonstrate that the brain stem saccadic burst generator encodes integrated conjugate and vergence commands, thus providing strong evidence for the proposal that the classic saccadic premotor pathway controls gaze in three-dimensional space.


2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


2008 ◽  
Vol 73 (6-7) ◽  
pp. 873-897 ◽  
Author(s):  
Vladimír Špirko ◽  
Ota Bludský ◽  
Wolfgang P. Kraemer

The adiabatic three-dimensional potential energy surface and the corresponding dipole moment surface describing the ground electronic state of HN2+ (Χ1Σ+) are calculated at different levels of ab initio theory. The calculations cover the entire bound part of the potential up to its lowest dissociation channel including the isomerization barrier. Energies of all bound vibrational and low-lying ro-vibrational levels are determined in a fully variational procedure using the Suttcliffe-Tennyson Hamiltonian for triatomic molecules. They are in close agreement with the available experimental numbers. From the dipole moment function effective dipoles and transition moments are obtained for all the calculated vibrational and ro-vibrational states. Statistical tools such as the density of states or the nearest-neighbor level spacing distribution (NNSD) are applied to describe and analyse general patterns and characteristics of the energy and dipole results calculated for the massively large number of states of the strongly bound HN2+ ion and its deuterated isotopomer.


2020 ◽  
Vol 73 (3) ◽  
pp. 379-397
Author(s):  
Elmar Holenstein

AbstractNot everything that is logically possible and technically feasible is also natural, for example, placing China in the exact center of a world map. Such a map would not correspond to the laws of perception.Matteo Ricci, who was the first to create Chinese world maps on which the Americas were depicted, had to choose between two ideals, between a world map that obeys the gestalt principles of perception and a world map with the “Central State” China in its center. The first ideal mattered more to him than the second, although he took the latter into account as well. The result was a Pacific-centered map.Since we live on a sphere, what we perceive to be in the East and in the West depends on our location. It is therefore natural that in East Asia, world maps show America in the East and not – as in Europe – in the West. This was the argument underlying Ricci’s creation of Pacific-centered maps, and not the intention of depicting China as close to the center of the map as possible.It is only in East Asia that Ricci was the first to create Pacific-centered maps. World maps with the Pacific in the midfield were made in Europe before Ricci, motivated by the traditional unidirectional numbering of the meridians (0°–360°) from West to East starting with the Atlantic Insulae Fortunatae (Canary Islands).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Hardy Laura ◽  
Cantaut-Belarif Yasmine ◽  
Pietton Raphaël ◽  
Slimani Lotfi ◽  
Pascal-Moussellard Hugues

AbstractCerebrospinal fluid (CSF) circulation relies on the beating of motile cilia projecting in the lumen of the brain and spinal cord cavities Mutations in genes involved in cilia motility disturb cerebrospinal fluid circulation and result in scoliosis-like deformities of the spine in juvenile zebrafish. However, these defects in spine alignment have not been validated with clinical criteria used to diagnose adolescent idiopathic scoliosis (AIS). The aim of this study was to describe, using orthopaedic criteria the spinal deformities of a zebrafish mutant model of AIS targeting a gene involved in cilia polarity and motility, cfap298tm304. The zebrafish mutant line cfap298tm304, exhibiting alteration of CSF flow due to defective cilia motility, was raised to the juvenile stage. The analysis of mutant animals was based on micro-computed tomography (micro-CT), which was conducted in a QUANTUM FX CALIPER, with a 59 µm-30 mm protocol. 63% of the cfap298tm304 zebrafish analyzed presented a three-dimensional deformity of the spine, that was evolutive during the juvenile phase, more frequent in females, with a right convexity, a rotational component and involving at least one dislocation. We confirm here that cfap298tm304 scoliotic individuals display a typical AIS phenotype, with orthopedic criteria mirroring patient’s diagnosis.


2021 ◽  
Vol 22 (12) ◽  
pp. 6385
Author(s):  
Maya A. Dymova ◽  
Elena V. Kuligina ◽  
Vladimir A. Richter

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, is highly resistant to conventional radiation and chemotherapy, and is not amenable to effective surgical resection. The present review summarizes recent advances in our understanding of the molecular mechanisms of therapeutic resistance of GBM to already known drugs, the molecular characteristics of glioblastoma cells, and the barriers in the brain that underlie drug resistance. We also discuss the progress that has been made in the development of new targeted drugs for glioblastoma, as well as advances in drug delivery across the blood–brain barrier (BBB) and blood–brain tumor barrier (BBTB).


Author(s):  
Dominic Gascho ◽  
Michael J. Thali ◽  
Rosa M. Martinez ◽  
Stephan A. Bolliger

AbstractThe computed tomography (CT) scan of a 19-year-old man who died from an occipito-frontal gunshot wound presented an impressive radiating fracture line where the entire sagittal suture burst due to the high intracranial pressure that arose from a near-contact shot from a 9 mm bullet fired from a Glock 17 pistol. Photorealistic depictions of the radiating fracture lines along the cranial bones were created using three-dimensional reconstruction methods, such as the novel cinematic rendering technique that simulates the propagation and interaction of light when it passes through volumetric data. Since the brain had collapsed, depiction of soft tissue was insufficient on CT images. An additional magnetic resonance imaging (MRI) examination was performed, which enabled the diagnostic assessment of cerebral injuries.


Sign in / Sign up

Export Citation Format

Share Document