scholarly journals The cognitive bases of human tool use

2012 ◽  
Vol 35 (4) ◽  
pp. 203-218 ◽  
Author(s):  
Krist Vaesen

AbstractThis article has two goals. The first is to assess, in the face of accruing reports on the ingenuity of great ape tool use, whether and in what sense human tool use still evidences unique, higher cognitive ability. To that effect, I offer a systematic comparison between humans and nonhuman primates with respect to nine cognitive capacities deemed crucial to tool use: enhanced hand-eye coordination, body schema plasticity, causal reasoning, function representation, executive control, social learning, teaching, social intelligence, and language. Since striking differences between humans and great apes stand firm in eight out of nine of these domains, I conclude that human tool use still marks a major cognitive discontinuity between us and our closest relatives. As a second goal of the paper, I address the evolution of human technologies. In particular, I show how the cognitive traits reviewed help to explain why technological accumulation evolved so markedly in humans, and so modestly in apes.

Author(s):  
Patrick Roberts

The evolutionary proximity of the non-human great apes to us is often stressed in studies of animals, such as Kanzi, a bonobo (Pan paniscus) bred in captivity, that demonstrate their capacity to undertake tool-use and even utilize and comprehend language (Toth et al., 1993; Savage-Rumbaugh and Lewin, 1996; Schick et al., 1999). Likewise, studies of chimpanzees (Pan spp.) have highlighted the similarity of their emotional and empathetic capacities to those of humans (Parr et al., 2005; Campbell and de Waal, 2014). However, as noted by Savage- Rumbaugh and Lewin (1996), in palaeoanthropology and archaeology more broadly, the emergence of the hominin clade and, later, our species, is referenced in terms of the ‘chasm’ between ourselves and other extant great apes. Indeed, despite our genetic and behavioural proximity, extant non-human great ape taxa are often popularly characterized as living fossils of how we used to be. They are used as analogues for the subsistence and behaviour of the Last Common Ancestor (LCA) of humans and non-human great apes (Clutton-Brock and Harvey, 1977; Goodall, 1986; Foley and Lewin, 2004) and it is almost as if the fact that they still occupy the tropical environments in which these hominoids likely evolved (though see Elton, 2008) allows them to be treated as static comparisons (Figure 3.1). Since Darwin wrote the Descent of Man in 1871, the forests of the tropics, and their modern non-human great ape inhabitants, have tended to be perceived as being left behind as the hominin clade gained increasingly ‘human’ traits of tool-use, medium to large game hunting, and upright locomotion on open ‘savanna’ landscapes (Dart, 1925; Potts, 1998; Klein, 1999). From this perspective it is perhaps unsurprising that tropical forests are seen as alien to the genus Homo and its closest hominin ancestors.


2016 ◽  
Vol 283 (1825) ◽  
pp. 20152402 ◽  
Author(s):  
E. Reindl ◽  
S. R. Beck ◽  
I. A. Apperly ◽  
C. Tennie

The variety and complexity of human-made tools are unique in the animal kingdom. Research investigating why human tool use is special has focused on the role of social learning: while non-human great apes acquire tool-use behaviours mostly by individual (re-)inventions, modern humans use imitation and teaching to accumulate innovations over time. However, little is known about tool-use behaviours that humans can invent individually, i.e. without cultural knowledge. We presented 2- to 3.5-year-old children with 12 problem-solving tasks based on tool-use behaviours shown by great apes. Spontaneous tool use was observed in 11 tasks. Additionally, tasks which occurred more frequently in wild great apes were also solved more frequently by human children. Our results demonstrate great similarity in the spontaneous tool-use abilities of human children and great apes, indicating that the physical cognition underlying tool use shows large overlaps across the great ape species. This suggests that humans are neither born with special physical cognition skills, nor that these skills have degraded due to our species’ long reliance of social learning in the tool-use domain.


2012 ◽  
Vol 35 (4) ◽  
pp. 240-241 ◽  
Author(s):  
Gijsbert Stoet ◽  
Lawrence H. Snyder

AbstractComparing cognitive functions between humans and nonhuman primates is helpful for understanding human tool use. We comment on the latest insights from comparative research on executive control functions. Based on our own work, we discuss how even a mental function in which non-human primates outperform humans might have played a key role in the development of tool use.


2012 ◽  
Vol 220 (1) ◽  
pp. 50-52 ◽  
Author(s):  
Martina Rieger
Keyword(s):  
Tool Use ◽  

2017 ◽  
Vol 4 (1) ◽  
pp. 47-59 ◽  
Author(s):  
Hélène Marie De Nys ◽  
Therese Löhrich ◽  
Doris Wu ◽  
Sébastien Calvignac-Spencer ◽  
Fabian Hubertus Leendertz

Abstract. Humans and African great apes (AGAs) are naturally infected with several species of closely related malaria parasites. The need to understand the origins of human malaria as well as the risk of zoonotic transmissions and emergence of new malaria strains in human populations has markedly encouraged research on great ape Plasmodium parasites. Progress in the use of non-invasive methods has rendered investigations into wild ape populations possible. Present knowledge is mainly focused on parasite diversity and phylogeny, with still large gaps to fill on malaria parasite ecology. Understanding what malaria infection means in terms of great ape health is also an important, but challenging avenue of research and has been subject to relatively few research efforts so far. This paper reviews current knowledge on African great ape malaria and identifies gaps and future research perspectives.


2021 ◽  
Vol 44 ◽  
Author(s):  
Fumihiro Kano ◽  
Josep Call

Abstract Recent findings from anticipatory-looking false-belief tests have shown that nonhuman great apes and macaques anticipate that an agent will go to the location where the agent falsely believed an object to be. Phillips et al.'s claim that nonhuman primates attribute knowledge but not belief should thus be reconsidered. We propose that both knowledge and belief attributions are evolutionary old.


2018 ◽  
pp. 1-12
Author(s):  
Amber E. MacKenzie
Keyword(s):  
Tool Use ◽  

2021 ◽  
pp. 73-140
Author(s):  
Michael A. Arbib

Architects design spaces that offer perceptual cues, affordances, for our various effectivities. Lina Bo Bardi’s São Paulo Museum demonstrates how praxic and contemplative actions are interleaved—space is effective and affective. Navigation often extends beyond wayfinding to support ongoing behavior. Scripts set out the general rules for a particular kind of behavior, and may suggest places that a building must provide. Cognitive maps support wayfinding. Other maps in the brain represent sensory or motor patterns of activity. Juhani Pallasmaa’s reflections on The Thinking Hand lead into a view of how the brain mediates that thinking, modeling hand–eye coordination at two levels. The first coordinates perceptual and motor schemas. The body schema is an adaptable collage of perceptual and motor skills. The second coordinates the ventral “what” pathway that can support planning of actions, and the dorsal “how” pathway that links affordance-related details to motor control. A complementary challenge is understanding how schemas in the head relate to social schemas. Finally, the chapter compares the cognitive challenges in designing a building and in developing a computational brain model of cognitive processes.


2020 ◽  
Vol 41 (6) ◽  
pp. 849-869 ◽  
Author(s):  
Fiona A. Stewart ◽  
Jill D. Pruetz

AbstractMany primates show sex differences in behavior, particularly social behavior, but also tool use for extractive foraging. All great apes learn to build a supportive structure for sleep. Whether sex differences exist in building, as in extractive foraging, is unknown, and little is known about how building skills develop and vary between individuals in the wild. We therefore aimed to describe the nesting behavior of savanna chimpanzees (Pan troglodytes verus) in Fongoli, Senegal to provide comparative data and to investigate possible sex or age differences in nest building behaviors and nest characteristics. We followed chimpanzee groups to their night nesting sites to record group (55 nights) and individual level data (17 individuals) on nest building initiation and duration (57 nests) during the dry season between October 2007 and March 2008. We returned the following morning to record nest and tree characteristics (71 nests built by 25 individuals). Fongoli chimpanzees nested later than reported for other great apes, but no sex differences in initiating building emerged. Observations were limited but suggest adult females and immature males to nest higher, in larger trees than adult males, and adult females to take longer to build than either adult or immature males. Smaller females and immature males may avoid predation or access thinner, malleable branches, by nesting higher than adult males. These differences suggest that sex differences described for chimpanzee tool use may extend to nest building, with females investing more time and effort in constructing a safe, warm structure for sleep than males do.


Sign in / Sign up

Export Citation Format

Share Document