The Murky Depths of the Main Sequence: Nearby Speckled Dwarfs and Elusive Brown Beasts

1992 ◽  
Vol 135 ◽  
pp. 10-20
Author(s):  
Todd J. Henry ◽  
Donald W. McCarthy

AbstractUsing infrared speckle imaging techniques, we have completed a comprehensive survey of all northern (δ ≥ −25°) M dwarfs within 8 parsecs for low mass companions. Of the 74 targets searched, six new companions were found. Included in the final census are four objects orbiting their primaries at sub-arcsecond separations which have masses near 80 Jupiters, making them viable brown dwarf candidates. Three of these — LHS 1047B, GL 623B and G 208-44B — are the faintest red objects for which masses have been determined and represent the limit of our current knowledge about the faint end of the mass-luminosity relation.The complete sample includes 99 members, and under further analysis reveals fundamental facts about the red dwarf population that were unknown until the present study: 1) 30-40 % of M dwarf primaries have companions, 2) more companions are found orbiting 1-10 AU from the primary than in any other decade interval, and 3) there are 50% fewer red dwarfs known in the more distant half of the survey volume, presumably because the parallax and proper motion surveys are incomplete.In addition, we find that the infrared luminosity function (LF) is fiat or rising toward the end of the main sequence, while the visible LF may be flat, and we illustrate that the determination of an accurate LF is critically sensitive to the resolution of binaries. A better description of the stellar population, the mass function, is found to be undoubtedly rising to the stellar/substellar break. Finally, we have developed a much-needed mass-luminosity relation for stars of mass 1.2 to 0.08 M⊙, and using these relations find that the M dwarfs contribute ~0.2 M⊙/pc3 to the galactic mass.

2020 ◽  
Vol 640 ◽  
pp. A15
Author(s):  
A. Rainot ◽  
M. Reggiani ◽  
H. Sana ◽  
J. Bodensteiner ◽  
C. A. Gomez-Gonzalez ◽  
...  

Context. Massive stars like company. However, low-mass companions have remained extremely difficult to detect at angular separations (ρ) smaller than 1″ (approx. 1000–3000 au, considering the typical distance to nearby massive stars) given the large brightness contrast between the companion and the central star. Constraints on the low-mass end of the companions mass-function for massive stars are needed, however, for helping, for example, to distinguish among the various scenarios that describe the formation of massive stars. Aims. With the aim of obtaining a statistically significant constraint on the presence of low-mass companions beyond the typical detection limit of current surveys (Δmag ≲ 5 at ρ ≲ 1″), we initiated a survey of O and Wolf-Rayet stars in the Carina region using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) coronagraphic instrument on the Very Large Telescope (VLT). In this, the first paper of the series, we aim to introduce the survey, to present the methodology and to demonstrate the capability of SPHERE for massive stars using the multiple system QZ Car. Methods. We obtained VLT-SPHERE snapshot observations in the IRDIFS_EXT mode, which combines the IFS and IRDIS sub-systems and simultaneously provides us four-dimensional (4D) data cubes in two different fields-of-view: 1.73″ × 1.73″ for IFS (39 spectral channels across the YJH bands) and 12″ × 12″ for IRDIS (two spectral channels across the K band). Angular- and spectral-differential imaging techniques as well as PSF-fitting were applied to detect and measure the relative flux of the companions in each spectral channel. The latter were then flux-calibrated using theoretical SED models of the central object and compared to a grid of ATLAS9 atmosphere model and (pre-)main-sequence evolutionary tracks, providing a first estimate of the physical properties of the detected companions. Results. Detection limits of 9 mag at ρ >  200 mas for IFS, and as faint as 13 mag at ρ > 1.​″8 for IRDIS (corresponding to sub-solar masses for potential companions), can be reached in snapshot observations of only a few minutes integration times, allowing us to detect 19 sources around the QZ Car system. All but two are reported here for the first time. With near-IR magnitude contrasts in the range of 4 to 7.5 mag, the three brightest sources (Ab, Ad, and E) are most likely to be physically bound. They have masses in the range of 2 to 12 M⊙ and are potentially co-eval with QZ Car central system. The remaining sources have flux contrast of 1.5 × 105 to 9.5 × 106 (ΔK ≈ 11 to 13 mag). Their presence can be explained by the local source density and they are, thus, likely to be chance alignments. If they were members of the Carina nebula, they would be sub-solar-mass pre-main sequence stars. Conclusions. Based on this proof of concept, we show that the VLT/SPHERE allows us to reach the sub-solar mass regime of the companion mass function. It paves the way for this type of observation with a large sample of massive stars to provide novel constraints on the multiplicity of massive stars in a region of the parameter space that has remained inaccessible so far.


2018 ◽  
Vol 619 ◽  
pp. A177 ◽  
Author(s):  
Isabelle Baraffe ◽  
Gilles Chabrier

Recently, an analysis of Gaia Data Release 2 revealed a gap in the mid-M dwarf main sequence. The authors suggested the feature is linked to the onset of full convection in M dwarfs. Following the announcement of this discovery, an explanation has been proposed based on standard stellar evolution models. In this paper we re-examine this explanation. We confirm that nuclear burning and mixing processes of 3He provide the best explanation for the observed feature. We also find that a change in the energy transport from convection to radiation does not induce structural changes that could be visible. Regarding the very details of the process, however, we disagree with the details of the published explanation and propose an alternative.


1999 ◽  
Vol 170 ◽  
pp. 121-130
Author(s):  
G. W. Marcy ◽  
R. Paul Butler ◽  
D. A. Fischer

AbstractWe have measured the radial velocities of 540 G and K main sequence stars with a precision of 3−10 ms−1 using the Lick and Keck échelle spectrometers. We had detected 6 companions that have m sin i < 7 MJup. We announce here the discovery of a new planet around Gliese 876, found in our Doppler measurements from both Lick and Keck. This is the first planet found around an M dwarf, which indicates that planets occur around low-mass stars, in addition to solar-type stars. We combine our entire stellar sample with that of Mayor et al. to derive general properties of giant planets within a few AU of these stars. Less than 1% of G and K main sequence stars harbor brown dwarf companions with masses between 5 and 70 MJup. Including Gliese 876b, 8 companions exhibit m sin i < 5 MJup which constitute the best planet candidates to date. Apparently, 4% of stars have planetary companions within the range m sin i = 0.5 to 5 MJup. Planets are distinguished from brown dwarfs by the discontinuous jump in the mass function at 5 MJup. About 2/3 of the planets orbit within just 0.3 AU due in part to their favorable detectability, but also possibly due to a real “pile up” of planets near the star. Inward orbital migration after formation may explain this, but the mechanism to stop the migration remains unclear. Five of eight planets have orbital eccentricities greater than that of our Jupiter, eJup = 0.048, and tidal circularization may explain most of the circular orbits. Thus, eccentric orbits are common and may arise from gravitational interactions with other planets, stars, or the protoplanetary disk. The planet-bearing stars are systematically metal-rich, as is the Sun, compared to the solar neighborhood.


1998 ◽  
Vol 11 (1) ◽  
pp. 409-409
Author(s):  
T. Axelrod ◽  
J.J. Binney ◽  
A.S. Burrows ◽  
G.S. da Costa ◽  
M. Grenon ◽  
...  

Most of the mass near the Sun takes the form of stars less luminous than the Sun. A central problem of Galactic astronomy is the determination of how much mass these stars contain. The only thoroughly reliable way of detecting mass is through its gravitational field. Classically this has been done by studying the Galaxy’s rotation curve and the Oort limit, both of which remain active areas of research. In the last few years an exciting new way of probing the Galaxy’s gravitational field has been opened up by large surveys for microlensing events. These surveys are yielding important information about the numbers of low-mass objects both in the disk and above it. Another truly dynamical probe for low-luminosity objects is provided by studies of clusters. JD 10 reviewed what we have learned about the density of low-luminosity stars from each of these approaches. An important orthogonal approach to determining the density of low-luminosity stars involves seperately determining the luminosity function and the mass-luminosity relation for stars of a given spectral class (e.g. main-sequence stars) and then combining them to obtain the mass function. The development of infrared detectors and the refurbishment of the The Hubble Space Telescope have recently yielded important advances in each of these areas. A major difficulty with this line of research is the fact that, in the neighbourhood of M = 0.08 Mʘ, the main-sequence mass-luminosity relation is (i) steep and non-linear, and (ii) dependent not only on the masses of the faintest stars, but also on their ages, metallicities, rotation rates, binarity etc. Moreover, cool low-luminosity stars have extremely complex spectra, which are difficult to simulate with radiative transfer calculations. Similar difficulties are encountered in the determination of the mass-luminosity relation for white dwarfs. JD 10 reviewed the current status of these very difficult problems.


2010 ◽  
Vol 6 (S276) ◽  
pp. 525-526
Author(s):  
Mario Damasso ◽  
Andrea Bernagozzi ◽  
Enzo Bertolini ◽  
Paolo Calcidese ◽  
Paolo Giacobbe ◽  
...  

AbstractSmall ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars, as recently demonstrated for example by the MEarth project. Since December 2009 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA) we are monitoring photometrically a sample of red dwarfs with accurate parallax measurements. The primary goal of this ‘pilot study’ is the characterization of the photometric microvariability of each target over a typical period of approximately 2 months. This is the preparatory step to long-term survey with an array of identical small telescopes, with kick-off in early 2011. Here we discuss the present status of the study, describing the stellar sample, and presenting the most interesting results obtained so far, including the aggressive data analysis devoted to the characterization of the variability properties of the sample and the search for transit-like signals.


2019 ◽  
Vol 15 (9) ◽  
pp. 43
Author(s):  
Nguyễn Thành Đạt ◽  
Phan Bảo Ngọc

In this paper, we present our search for debris disks in a sample of nearby late-M dwarfs based on infrared data of the Wide Infrared Survey Explorer. Using archival data, we constructed spectral energy distributions of these targets to detect their infrared excess. We detected infrared excess only in one target. This late-M dwarf is an excellent benchmark for further study of disks around very low-mass objects.


2019 ◽  
Vol 623 ◽  
pp. A84 ◽  
Author(s):  
J. S. Clark ◽  
M. E. Lohr ◽  
L. R. Patrick ◽  
F. Najarro

The Arches is one of the youngest, densest and most massive clusters in the Galaxy. As such it provides a unique insight into the lifecycle of the most massive stars known and the formation and survival of such stellar aggregates in the extreme conditions of the Galactic Centre. In a previous study we presented an initial stellar census for the Arches and in this work we expand upon this, providing new and revised classifications for ∼30% of the 105 spectroscopically identified cluster members as well as distinguishing potential massive runaways. The results of this survey emphasise the homogeneity and co-evality of the Arches and confirm the absence of H-free Wolf-Rayets of WC sub-type and predicted luminosities. The increased depth of our complete dataset also provides significantly better constraints on the main sequence population; with the identification of O9.5 V stars for the first time we now spectroscopically sample stars with initial masses ranging from ∼16 M⊙ to ≥120 M⊙. Indeed, following from our expanded stellar census we might expect ≳50 stars within the Arches to have been born with masses ≳60 M⊙, while all 105 spectroscopically confirmed cluster members are massive enough to leave relativistic remnants upon their demise. Moreover the well defined observational properties of the main sequence cohort will be critical to the construction of an extinction law appropriate for the Galactic Centre and consequently the quantitative analysis of the Arches population and subsequent determination of the cluster initial mass function.


1994 ◽  
Vol 146 ◽  
pp. 61-70
Author(s):  
James Liebert

The term dwarf stars identifies objects of small radius in the Hertzsprung-Russell (H-R) Diagram, but encompasses more than one phase of stellar evolution. The M dwarfs (type dM) populate the main sequence at the low mass end; these are the coolest core hydrogen-burning stars. They belong generally to the Galactic disk, or Population I, have relatively small space motions with respect to the Sun, and have similar metallicities to the Sun (although perhaps only within a factor of several). In particular, this means that the abundance of oxygen is always greater than that of carbon. The M subdwarfs (sdM) are the Population II counterparts, showing low metallicities and high space motions. Because they have smaller radii, they define a main sequence at lower luminosity than the M dwarfs for a given temperature. Hence the term subdwarf.


1999 ◽  
Vol 172 ◽  
pp. 405-407
Author(s):  
L.G. Taff ◽  
John L. Hershey

The M dwarf L722-22 (= LHS 1047) was discovered to be a binary system by Ianna 20 years ago. The analysis of the ground- based data indicated a mass 0.06M⊙ for the secondary. This is below the nominal stellar mass limit of 0.08M⊙. The importance of potential “brown-dwarf” candidates, and the fact that the masses of both components place them near the end of the main sequence, made this system a prime object for further, intensive, study.This close (separation 0."3), faint (V = 11.m5, 14.m4) binary was near the limit for ground-based work. The residuals of an individual night’s photographic data were typically at the 50% level. Also, the photographic images are completely blended. The few one-dimensional speckle data points yielded a merged, asymmetric image profile. Finally, this system is too faint for HIPPARCOS. Our proposal for Hubble Space Telescope Fine Guidance Sensor (FGS) observing was approved in 1992.


2017 ◽  
Vol 600 ◽  
pp. A13 ◽  
Author(s):  
N. Astudillo-Defru ◽  
X. Delfosse ◽  
X. Bonfils ◽  
T. Forveille ◽  
C. Lovis ◽  
...  

Context. Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres, and thus increase the observed flux in the Ca ii H and K doublet. Starting with the historical Mount Wilson monitoring program, these two spectral lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period (Prot) and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca ii emission is traditionally quantified through the R'HK-index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M dwarfs – the most numerous stars of the Galaxy – were left out of these analyses and no calibration of their Ca ii H and K emission to an R'HK exists to date. Aims. We set out to characterize the magnetic activity of the low- and very-low-mass stars by providing a calibration of the R'HK-index that extends to the realm of M dwarfs, and by evaluating the relationship between R'HK and the rotation period. Methods. We calibrated the bolometric and photospheric factors for M dwarfs to properly transform the S-index (which compares the flux in the Ca ii H and K lines to a close spectral continuum) into the R'HK. We monitored magnetic activity through the Ca ii H and K emission lines in the HARPS M dwarf sample. Results. The R'HK index, like the fractional X-ray luminosity LX/Lbol, shows a saturated correlation with rotation, with saturation setting in around a ten days rotation period. Above that period, slower rotators show weaker Ca ii activity, as expected. Under that period, the R'HK index saturates to approximately 10-4. Stellar mass modulates the Ca ii activity, with R'HK showing a constant basal activity above 0.6 M⊙ and then decreasing with mass between 0.6 M⊙ and the fully-convective limit of 0.35 M⊙. Short-term variability of the activity correlates with its mean level and stars with higher R'HK indexes show larger R'HK variability, as previously observed for earlier spectral types.


Sign in / Sign up

Export Citation Format

Share Document