scholarly journals Preparing the COROT Space Mission: Building A Photometric and Variability Database of Stars in its Field of View

2004 ◽  
Vol 193 ◽  
pp. 564-568
Author(s):  
P.J. Amado ◽  
R. Garrido ◽  
E. Poretti ◽  
E. Michel

The CNES/European space mission COROT will monitor asteroseismic targets located in selected fields to probe stellar interiors. Therefore, suitable candidate targets have to be searched for in order to optimize the scientific return of the mission. However, to be able to use the asteroseismic tools on the stars, their physical parameters must be known in advance. In this work, we detail the process of building a photometric database of all the stars brighter than V = 8.0 in the field of view of COROT and the process of selecting suitable δ Sct and γ Dor-type stars for the mission.For an optimal selection of the seismology targets (for both COROT programs devoted to asteroseismology, i.e., the core and exploratory ones), it is essential to gather a priori as much information as possible on all potential candidates. With this aim, Strömgren-Crawford uvby-Hβ and Ca II H&K photometry were obtained for all of them. These data have been used to derive estimates of their effective temperatures, surface gravities and metallicities. These observations, together with high resolution echelle spectroscopy and high angular resolution imaging observations, are components of an ambitious ground-based program.

Author(s):  
Maria A. Milkova

Nowadays the process of information accumulation is so rapid that the concept of the usual iterative search requires revision. Being in the world of oversaturated information in order to comprehensively cover and analyze the problem under study, it is necessary to make high demands on the search methods. An innovative approach to search should flexibly take into account the large amount of already accumulated knowledge and a priori requirements for results. The results, in turn, should immediately provide a roadmap of the direction being studied with the possibility of as much detail as possible. The approach to search based on topic modeling, the so-called topic search, allows you to take into account all these requirements and thereby streamline the nature of working with information, increase the efficiency of knowledge production, avoid cognitive biases in the perception of information, which is important both on micro and macro level. In order to demonstrate an example of applying topic search, the article considers the task of analyzing an import substitution program based on patent data. The program includes plans for 22 industries and contains more than 1,500 products and technologies for the proposed import substitution. The use of patent search based on topic modeling allows to search immediately by the blocks of a priori information – terms of industrial plans for import substitution and at the output get a selection of relevant documents for each of the industries. This approach allows not only to provide a comprehensive picture of the effectiveness of the program as a whole, but also to visually obtain more detailed information about which groups of products and technologies have been patented.


Author(s):  
Laure Fournier ◽  
Lena Costaridou ◽  
Luc Bidaut ◽  
Nicolas Michoux ◽  
Frederic E. Lecouvet ◽  
...  

Abstract Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. Key Points • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.


Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 68
Author(s):  
Takahiro Fujisaku ◽  
Ryuji Igarashi ◽  
Masahiro Shirakawa

The dynamics of physical parameters in cells is strongly related to life phenomena; thus, a method to monitor and visualize them on a single-organelle scale would be useful to reveal unknown biological processes. We demonstrate real-time nanometre-scale T1-weighted imaging using a fluorescent nanodiamond. We explored optically detected magnetic resonance (ODMR) contrast at various values of interval laser pulse (τ), showing that sufficient contrast is obtained by appropriate selection of τ. By this method, we visualized nanometre-scale pH changes using a functionalized nanodiamond whose T1 has a dependence on pH conditions.


2012 ◽  
Vol 5 (2) ◽  
pp. 2169-2220 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
M.-J. Jeong ◽  
B. N. Holben ◽  
...  

Abstract. This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-yr (1997–2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where SeaWiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record is suitable for quantitative scientific use.


2008 ◽  
Vol 47 (17) ◽  
pp. 3080 ◽  
Author(s):  
Javier García ◽  
Vicente Micó ◽  
Dan Cojoc ◽  
Zeev Zalevsky

2016 ◽  
Vol 88 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Ka-yan Yim ◽  
Chi-wai Kan

Fabric hand is an indispensable characteristic for the selection of fabric and product development and the buying consideration for manufacturers and consumers. However, there is little comprehensive work on the hand feel property of warp-knitted fabrics due to the mainstream natural fibers (cotton, wool and silk) and other fabric structures (woven, weft-knitted and nonwoven). The increasing potential for the wide variety of applications and development of warp-knitted fabrics is not only because its fabric hand gives better determination for fabric marketing, but also because it provides extensive scope for fabric performance and appearance. This paper reports an experimental study on the integrated fabric hand behavior of a series of warp-knitted fabrics made for various apparel applications, such as sportswear, lingerie and leisure wear. These 105 fabrics were produced by varying different physical parameters, including fabric weight and fabric thickness. The Kawabata Evaluation System for Fabric (KES-F) was employed to obtain the fabric hand properties (primary hand value and total hand value) related with stiffness, smoothness and softness. All low-stress mechanical properties and fabric hand values from the testing results were used to verify the applicability of the KES-F on warp-knitted fabrics and to analyze the relationships of fabric parameters and hand characteristics. The results indicate that the KES-F is an appropriate tool to measure the hand attributes of warp-knitted samples, and moderate correlations between physical properties and mechanical behavior were found.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ai Wern Chung ◽  
Borjan Gagoski ◽  
Jane W Newburger ◽  
P. Ellen Grant ◽  
Michelle GURVITZ

Introduction: The population of adults with d-transposition of the great arteries (TGA) continue to grow. As this group has underlying neurocognitive impairment and longer-term neurovascular damage, advanced neuroimaging to identify markers for treatment is required. Diffusion (d)MRI tractography quantifies the structural integrity of white matter (WM) pathways in the brain - where lower FA (fractional anisotropy) and higher ADC (apparent diffusion coefficient) typify WM damage. The brain’s structural backbone is its rich club (RC), a set of highly interconnected regions established before birth and vital for effective cognitive function. Moreover, there are Feeder and Seeder subnetworks peripheral to the RC, which are thought to form later and may be more adaptive. Hypothesis: We hypothesize that adults with TGA have alterations in both the brain’s structural RC and in peripheral connections. Methods: Subjects were TGA adults from the Boston Circulatory Arrest Study (n = 25, mean age 28.46 ± 1.14yr) and Controls (n = 13, 28.35 ± 1.70). Multi-shell, high-angular resolution dMRI data were acquired and fitted with a multi-fiber model (Fig). After tractography, a connectome of the number of tracts connecting pairwise cortical regions was computed. A priori RC regions were bilateral superior frontal and parietal frontal gyri, precuneus, posterior cingulate and insular regions. Connections were grouped into subnetworks and mean FA and ADC computed. Results: Cohorts were age-matched (p=0.801, unpaired t-test). Overall, patients had lower FA and greater ADC than controls in all subnetworks. Group differences (unpaired t-tests) were significant in the RC (ADC p=0.029), Feeder subnetwork (FA p=0.041; ADC p=0.042), with trends in Seeder subnetworks (FA p=0.061; ADC p=0.062). Conclusions: Widespread WM alterations exist in adults with TGA not only in the brain’s most central system, but also connections feeding into the RC suggesting prenatal and adaptive changes.


Sign in / Sign up

Export Citation Format

Share Document