Oscillations in Young Stellar Objects

2002 ◽  
Vol 185 ◽  
pp. 352-353
Author(s):  
F.J.G. Pinheiro ◽  
D.F.M. Folha ◽  
M.J.P.F.G. Monteiro ◽  
M. Marconi ◽  
V. Ripepi ◽  
...  

AbstractWe report the discovery of periodicities in the light curve of the Herbig Ae star V346 Ori. We interpret these variations as the superposition of at least two signals with periods P1=42±6 min and P2=68±12 min resulting from stellar oscillations. The computation of linear non-adiabatic pulsation models for Pre-Main Sequence (PMS) stars reproduces these periods for a 1.5 M⊙ star with Teff= 7300 K and log L/L⊙= 0.74, pulsating in the fundamental and second overtones.

2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


2002 ◽  
Vol 206 ◽  
pp. 27-34
Author(s):  
Mark J. Claussen

I present a review of observations of water masers, in particular very high angular resolution of water masers using Very Long Baseline Interferometry, with which it is possible to probe the environment of young stellar objects and forming stars within only a few A.U. of the protostar, its accretion disk, and therefore the base of outflowing material. Although reference is made to some high-luminosity sources, the main thrust of the review are the water masers found toward forming objects whose mass and luminosity will be approximately that of the Sun when they reach the main sequence.


1997 ◽  
Vol 182 ◽  
pp. 241-258 ◽  
Author(s):  
Max Camenzind

Formation of jets in low-mass protostellar objects and young pre-main sequence stars is ultimately related to the existence of some gaseous disk around a rapidly rotating central object. This configuration has deep parallels to extragalactic systems such as radio galaxies and quasars. Rotating black holes are still thought to be the prime-mover behind the activity detected in centers of galaxies, while, in the case of protostellar jets, rapidly rotating stars and disks are responsible for the ejection of bipolar outflows. In both cases, magnetic fields are invoked for the acceleration, the collimation and propagation of these outflows. The ultimate rooting of these fields is still under debate. We discuss models where winds injected into rapidly rotating magnetospheres of the central object drive the outflows. From these considerations it follows that the jets of young stellar objects can only be produced magnetically and that their progagation is determined by their magnetic properties. Such jets have low Mach numbers ≃ 2 and their instabilities are dominated by the pinch mode. Knots closest to the source are attributed to compression by the time-dependent pinches. Multiple bow shocks occur on longer time-scales (a few thousand years) and are attributed to variations in the magnetospheric structure of the star, or the disk.


2015 ◽  
Vol 799 (1) ◽  
pp. 53 ◽  
Author(s):  
Christine M. Koepferl ◽  
Thomas P. Robitaille ◽  
Esteban F. E. Morales ◽  
Katharine G. Johnston

2009 ◽  
Vol 5 (H15) ◽  
pp. 734-734
Author(s):  
John R. Stauffer ◽  
Maria Morales ◽  
Luisa Rebull

In Morales et al. (2009), we have recently investigated the mid-infrared (3.6 to 8.0 micron) variability of young-stellar objects (YSOs) using the IRAC camera on the Spitzer Space Telescope. Specifically, we obtained synoptic photometry of about 70 YSOs in the ~1 Myr old IC1396A globule over a 14 day period. More than half of the YSOs were detectably variable, with amplitudes up to about 0.2 magnitudes. About a third of these objects showed quasi-sinusoidal light curves with apparent periods of typically 5 to 12 days. At least two families of models can explain such light curves: (a) a Class II YSO with a photospheric hot spot which locally heats the inner circumstellar disk which is viewed from slightly above the disk plane, and (b) a YSO with a warped disk or with some other non-axisymmetric inner disk density profile, also seen with a view angle slightly above the disk plane. The two models can both yield light curve shapes and amplitudes similar to what we observe in the mid-infrared, but produce very different light curves at shorter wavelengths dominated by the stellar photosphere. Because we only had IRAC photometry for IC1396A, we were not able to discriminate between the two models for this set of data.


1993 ◽  
Vol 10 (3) ◽  
pp. 203-207 ◽  
Author(s):  
W.J. Zealey ◽  
M.G. Suters ◽  
P.R. Randall

AbstractOur current understanding of Herbig-Haro objects and their relationship with outflows and Pre-Main-Sequence objects is limited. Although the general mechanism of outflows is understood, the detailed questions concerning the outflowing material’s origin and the collimation mechanisms remain largely unanswered. The role of multi-waveband observations (visible, infrared and radio) is vital to our understanding of the shock dynamics of outflows.This paper discusses high spatial resolution near infrared maps of three outflow complexes, HH34, HH46/HH47 and HH54, made using the Anglo Australian Observatory’s infrared camera, IRIS. For the first time molecular hydrogen emission is observed associated with the edges of outflow cavities. In the cases of HH46/47 and to a lesser extent HH34 molecular emission is seen coincident with highly collimated jets feeding the outflow cavities.


2017 ◽  
Vol 13 (S336) ◽  
pp. 37-40 ◽  
Author(s):  
Bringfried Stecklum ◽  
Alessio Caratti o Garatti ◽  
Klaus Hodapp ◽  
Hendrik Linz ◽  
Luca Moscadelli ◽  
...  

AbstractMethanol and water masers indicate young stellar objects. They often exhibit flares, and a fraction shows periodic activity. Several mechanisms might explain this behavior but the lack of concurrent infrared (IR) data complicates the identification of its cause. Recently, 6.7 GHz methanol maser flares were observed, triggered by accretion bursts of high-mass YSOs which confirmed the IR-pumping of these masers. This suggests that regular IR changes might lead to maser periodicity. Hence, we scrutinized space-based IR imaging of YSOs associated with periodic methanol masers. We succeeded to extract the IR light curve from NEOWISE data for the intermediate mass YSO G107.298+5.639. Thus, for the first time a relationship between the maser and IR variability could be established. While the IR light curve shows the same period of ~34.6 days as the masers, its shape is distinct from that of the maser flares. Possible reasons for the IR periodicity are discussed.


2007 ◽  
Vol 3 (S249) ◽  
pp. 369-374
Author(s):  
O. Schütz ◽  
G. Meeus ◽  
M. F. Sterzik ◽  
E. Peeters

AbstractWe review mid-infrared N-band spectra (8–13 μm) for a sample of 28 targets, obtained with the TIMMI2 camera at La Silla Observatory. The sample contains 5 FU Orionis stars, 6 Herbig Ae/Be objects, 7 T Tauri stars and 10 Vega-type main sequence objects. All targets show infrared excess, but for several the proof of circumstellar matter was lacking up to our observations. We model the N-band emission features with a mixture of silicates consisting of different grain sizes and composition, and determine the status of dust processing in these disks. While for some targets the emission spectrum resembles those of known pre-main sequence stars of evolved dust, other objects show strong isolated PAH bands but no silicate emission. For the first time we find evidence of PAH processing occurring in a T Tauri star. The Vega-type object HD 113766 exhibits highly-processed secondary generation dust, likely released by the collision of planetesimal-sized bodies. The findings of our dust analysis are set in context to previous dust studies of young stellar objects.


Sign in / Sign up

Export Citation Format

Share Document