Distribution and Space Density of Soft X-ray Emitting Polars in the Solar Neighbourhood

1997 ◽  
Vol 166 ◽  
pp. 247-250
Author(s):  
H.-C. Thomas ◽  
K. Beuermann

The ROSAT All Sky Survey (RASS) was the first one performed with an imaging telescope in the soft X-ray regime and has led to the discovery of numerous new objects whose emission is dominated by soft X-rays. Among these are white dwarfs and a subclass of the cataclysmic variables (CVs), the Polars or AM Herculis binaries. From a pre-ROSAT census of only 17, the number of known sources of this class has increased to some 55 (Beuermann and Thomas 1993, Beuermann 1997). Distances or lower limits to the distance are available for some 35 of these, based on the detection or non-detection of the TiO-Features in their optical red spectra. The derived distances range from below 100 pc up to ~ 600 pc, implying that many of these objects are located within the “Local Bubble” of low gas density in interstellar space. As the soft X-ray emission can be reasonably well represented by blackbody emission with a typical temperature of kTbb ≃ 25 eV, spectral fits to the ROSAT PSPC spectra from either the All-Sky-Survey (RASS) or from subsequent pointed ROSAT observations allow to determine the foreground absorption column density in the direction of the polars.

2019 ◽  
Vol 626 ◽  
pp. A48 ◽  
Author(s):  
M. E. Ramos-Ceja ◽  
F. Pacaud ◽  
T. H. Reiprich ◽  
K. Migkas ◽  
L. Lovisari ◽  
...  

Presently, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function of the ROSAT satellite limits the attainable amount of spatial information for the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher-resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXC J2306.6−1319, ZwCl 1665, and RXC J0034.6−0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX, 500 ≥ 5 × 10−12 erg s−1 cm−2 in the 0.1−2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually seven, rather than three. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl 1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster–cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected.


2001 ◽  
Vol 205 ◽  
pp. 268-269 ◽  
Author(s):  
S. Fabrika ◽  
A. Mescheryakov

The object SS433 is a well-known source of relativistic jets, which are formed in supercritical accretion disk. It is very probable that the disk has polar channels and their radiation is collimated (the photo-cones). A face-on SS433 object can appear as ultra-bright and highly variable X-ray source, Lx ˜ 1040 − 1042 erg/s. We discuss the properties of these hypothetical objects and their frequency expected in galaxies. We describe a search for such objects using the ROSAT All Sky Survey and RC3 catalog of galaxies. Among the total 418 positive correlations we find that 142 sources in S and Irr galaxies are unknown as AGNs. Nuclear sources among them still contain many AGNs. Non-nuclear (offset) sources are rather hard, their X-ray luminosities are 1039 − 1041 erg/s. Their observed frequency is about 4–5% per galaxy, that is in agreement with expected frequency of the face-on SS 433 stars. The only way to recognize such stars is their expected violent variability in X rays.


2004 ◽  
Vol 194 ◽  
pp. 75-76
Author(s):  
N. A. Webb ◽  
B. Gendre ◽  
D. Barret

AbstractGlobular clusters (GCs) harbour a large number of close binaries which are hard to identify optically due to high stellar densities. Observing these GCs in X-rays, in which the compact binaries are bright, diminishes the over-crowding problem. Using the new generation of X-ray observatories, it is possible to identify populations of neutron star low mass X-ray binaries, cataclysmic variables and millisecond pulsars as well as other types of binaries. We present the spectra of a variety of binaries that we have identified in four GCs observed by XMM-Newton. We show that through population studies we can begin to understand the formation of individual classes of binaries in GCs and hence start to unfold the complex evolutionary paths of these systems.


2017 ◽  
Vol 14 (S339) ◽  
pp. 145-145
Author(s):  
A. Rau

AbstracteROSITA (the extended ROentgen Survey with an Imaging Telescope Array) onboard the Spectrum Roentgen Gamma mission will perform a deep all-sky X-ray survey. During the first four years of operation the satellite will scan the entire sky every once every half year, visiting any position between 8 and 500 times. The eROSITA scanning strategy will test a wide range of times-scales, from seconds to years, and thus provide a powerful window into the X-ray transient and variable sky. This contribution summarised the key science opportunities for time-domain studies with eROSITA, and presented strategies for finding transients in the all-sky survey data.


1968 ◽  
Vol 46 (10) ◽  
pp. S409-S413 ◽  
Author(s):  
Walter H. G. Lewin ◽  
George W. Clark ◽  
William B. Smith

A complete X-ray survey of the northern sky has been made in the energy range 20–100 keV. Spectra are given for Cyg X-1 and Tau X-1. Intensity ratios (Cyg X-1/Tau X-1) of 0.84 ± 0.10 and 1.30 ± 0.25 were derived in the 20–70 keV range from data obtained on July 19, 1966 and February 13, 1967, respectively. Observations on Sco X-1 and the Coma cluster show upper limits which are quite different from results reported by other groups.


2010 ◽  
Author(s):  
S. Murray ◽  
R. Giacconi ◽  
A. Ptak ◽  
P. Rosati ◽  
M. Weisskopf ◽  
...  
Keyword(s):  
X Rays ◽  
X Ray ◽  

2021 ◽  
Vol 648 ◽  
pp. A39
Author(s):  
N. I. Shakura ◽  
D. A. Kolesnikov ◽  
P. S. Medvedev ◽  
R. A. Sunyaev ◽  
M. R. Gilfanov ◽  
...  

eROSITA (extended ROentgen Survey with an Imaging Telescope Array) instrument onboard the Russian-German ‘Spectrum-Roentgen-Gamma’ (SRG) mission observed the Her X-1/HZ Her binary system in multiple scans over the source during the first and second SRG all-sky surveys. Both observations occurred during a low state of the X-ray source when the outer parts of the accretion disk blocked the neutron star from view. The orbital modulation of the X-ray flux was detected during the low states. We argue that the detected X-ray radiation results from scattering of the emission of the central source by three distinct regions: (a) an optically thin hot corona with temperature ~(2−4) × 106 K above the irradiated hemisphere of the optical star; (b) an optically thin hot halo above the accretion disk; and (c) the optically thick cold atmosphere of the optical star. The latter region effectively scatters photons with energies above 5–6 keV.


1980 ◽  
Vol 88 ◽  
pp. 453-465 ◽  
Author(s):  
I. G. Mitrofanov

The stars of the AM Herculis group (AM Her, VV Pup, AN UMa and 2A 0311-227) are close binaries containing a mass losing, nondegenerate star and an accreting degenerate dwarf. Their main properties are: the large linear and circular polarization of the optical light, high and low luminosity states, the variable emission line, spectra of H, He and other elements and the identification of these objects with X-ray sources. It is generally accepted that the strong magnetic field of the degenerate dwarf is responsible for these peculiar properties and for the distinction between these objects and the cataclysmic variables (Mitrofanov 1978, 1979a). The polarized optical continuum may be emitted by the accreted magnetized plasma (e.g. Chanmugam and Wagner, 1979), by the magnetized photosphere of the degenerate dwarf (Mitrofanov et al. 1977), or by both sources (Mitrofanov, 1979b). To explain the observed X-rays, Lamb and Masters (1979) showed that a magnetic field about 108 gs is necessary. Unfortunately, the basic prediction of their model - the strong ultraviolet continuum in the spectrum of AM Herculis - appears to be absent (Raymond et al. 1979). Chanmugam and Wagner (1979) proposed a rather different estimate for B of 2 · 108/m*gs (m* = 5 ÷ 25). For further investigations of the AM Herculis-type stars it seems useful to find a direct observational method for measuring the dwarfs′ magnetic fields.


The satellite Hinotori was launched in 1981 by the Institute of Space and Astronautical Science of Japan. Two major experiments on board the Hinotori satellite were a hard X-ray imaging telescope with modulation collimators, and a high dispersion soft X-ray crystal spectrometer utilizing the Bragg diffraction of X-rays on quartz crystals. These two instruments have revealed for the first time that solar flares show varying characteristics depending on the environment of flaring regions, and that flares produce plasmas as hot as 3-4 x 10 7 K.


2017 ◽  
Vol 13 (S337) ◽  
pp. 112-115
Author(s):  
Adriana M. Pires

AbstractSince the discovery of the first radio pulsar fifty years ago, the population of neutron stars in our Galaxy has grown to over 2,600. A handful of these sources, exclusively seen in X-rays, show properties that are not observed in normal pulsars. Despite their scarcity, they are key to understanding aspects of the neutron star phenomenology and evolution. The forthcoming all-sky survey of eROSITA will unveil the X-ray faint end of the neutron star population at unprecedented sensitivity; therefore, it has the unique potential to constrain evolutionary models and advance our understanding of the sources that are especially silent in the radio and γ-ray regimes. In this contribution I discuss the expected role of eROSITA, and the challenges it will face, at probing the galactic neutron star population.


Sign in / Sign up

Export Citation Format

Share Document