The Wide Field X-ray Telescope Mission—A Digital Sky Survey in X-rays

Author(s):  
S. Murray ◽  
R. Giacconi ◽  
A. Ptak ◽  
P. Rosati ◽  
M. Weisskopf ◽  
...  
Keyword(s):  
X Rays ◽  
X Ray ◽  
2003 ◽  
Vol 214 ◽  
pp. 70-83 ◽  
Author(s):  
T. P. Li

The energy range of hard X-rays is a key waveband to the study of high energy processes in celestial objects, but still remains poorly explored. In contrast to direct imaging methods used in the low energy X-ray and high energy gamma-ray bands, currently imaging in the hard X-ray band is mainly achieved through various modulation techniques. A new inversion technique, the direct demodulation method, has been developed since early 90s. with this technique, wide field and high resolution images can be derived from scanning data of a simple collimated detector. The feasibility of this technique has been confirmed by experiment, balloon-borne observation and analyzing simulated and real astronomical data. Based the development of methodology and instrumentation, a high energy astrophysics mission – Hard X-ray Modulation Telescope (HXMT) has been proposed and selected in China for a four-year Phase-A study. The main scientific objectives are a full-sky hard X-ray (20–200 keV) imaging survey and high signal-to-noise ratio timing studies of high energy sources.


1995 ◽  
Vol 151 ◽  
pp. 431-434
Author(s):  
Eugene Moskalenko

Recent observations of the ASCA satellite resulted in the first identification of a GB source (Murakami et al. 1994). This success confirmed the importance of simultaneous observations in different wavelength bands for GB studies. Besides the ASCA results, there were several observations of GBs in X-ray band with the Ginga (Yoshida et al,.1989), V 78/1 (Laros et al. 1984) and other satellites. It became clear that GBs emit 4 - 8% of their energy in the 2 - 10 keV range. The main task now is to have an equipment which will be able to monitor the sky in X-rays in a mode similar to that of GRO observations, i.e. the telescope should have an all-sky field-of-view (FoV) and should work continuously.A telescope with these features but operating at soft X-ray energies may directly determine the GB distance scale, due to interstellar absorption of the photons with energies less than 2 keV, as was pointed out first by Schaefer (1993). Flaring sources similar to GBs in time scale may be found also in the EUV (hundreds of angstroms) with the help of very wide-field cameras. Of course each such device - in X-ray, soft X-ray and EUV bands - will discover many transient objects, flaring events, will study time variability of bright “stationary” sources etc. In this paper we describe several instrumental approaches in these fields.


1997 ◽  
Vol 166 ◽  
pp. 247-250
Author(s):  
H.-C. Thomas ◽  
K. Beuermann

The ROSAT All Sky Survey (RASS) was the first one performed with an imaging telescope in the soft X-ray regime and has led to the discovery of numerous new objects whose emission is dominated by soft X-rays. Among these are white dwarfs and a subclass of the cataclysmic variables (CVs), the Polars or AM Herculis binaries. From a pre-ROSAT census of only 17, the number of known sources of this class has increased to some 55 (Beuermann and Thomas 1993, Beuermann 1997). Distances or lower limits to the distance are available for some 35 of these, based on the detection or non-detection of the TiO-Features in their optical red spectra. The derived distances range from below 100 pc up to ~ 600 pc, implying that many of these objects are located within the “Local Bubble” of low gas density in interstellar space. As the soft X-ray emission can be reasonably well represented by blackbody emission with a typical temperature of kTbb ≃ 25 eV, spectral fits to the ROSAT PSPC spectra from either the All-Sky-Survey (RASS) or from subsequent pointed ROSAT observations allow to determine the foreground absorption column density in the direction of the polars.


2012 ◽  
Vol 10 (H16) ◽  
pp. 669-670
Author(s):  
Richard D. Saxton

AbstractWe review the history of X-ray sky surveys from the early experiments to the catalogues of 105 sources produced by ROSAT, Chandra and XMM-Newton. At bright fluxes the X-ray sky is shared between stars, accreting binaries and extragalactic sources while deeper surveys are dominated by AGN and clusters of galaxies. The X-ray background, found by the earliest missions, has been largely resolved into discrete sources at soft (0.3-2 keV) energies but at higher energies an important fraction still escapes detection. The possible identification of the missing flux with Compton-thick AGN has been probed in recent years by Swift and Integral.Variability seen in objects observed at different epochs has proved to be an excellent discriminator for rare classes of objects. The comparison of ROSAT All Sky Survey (RASS) and ROSAT pointed observations identified several Novae and high variability AGN as well as initiating the observational study of Tidal Disruption events. More recently the XMM-Newton slew survey, in conjunction with archival RASS data, has detected further examples of flaring objects which have been followed-up in near-real time at other wavelengths.


2019 ◽  
Vol 626 ◽  
pp. A48 ◽  
Author(s):  
M. E. Ramos-Ceja ◽  
F. Pacaud ◽  
T. H. Reiprich ◽  
K. Migkas ◽  
L. Lovisari ◽  
...  

Presently, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function of the ROSAT satellite limits the attainable amount of spatial information for the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher-resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXC J2306.6−1319, ZwCl 1665, and RXC J0034.6−0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX, 500 ≥ 5 × 10−12 erg s−1 cm−2 in the 0.1−2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually seven, rather than three. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl 1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster–cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected.


2001 ◽  
Vol 205 ◽  
pp. 268-269 ◽  
Author(s):  
S. Fabrika ◽  
A. Mescheryakov

The object SS433 is a well-known source of relativistic jets, which are formed in supercritical accretion disk. It is very probable that the disk has polar channels and their radiation is collimated (the photo-cones). A face-on SS433 object can appear as ultra-bright and highly variable X-ray source, Lx ˜ 1040 − 1042 erg/s. We discuss the properties of these hypothetical objects and their frequency expected in galaxies. We describe a search for such objects using the ROSAT All Sky Survey and RC3 catalog of galaxies. Among the total 418 positive correlations we find that 142 sources in S and Irr galaxies are unknown as AGNs. Nuclear sources among them still contain many AGNs. Non-nuclear (offset) sources are rather hard, their X-ray luminosities are 1039 − 1041 erg/s. Their observed frequency is about 4–5% per galaxy, that is in agreement with expected frequency of the face-on SS 433 stars. The only way to recognize such stars is their expected violent variability in X rays.


1968 ◽  
Vol 46 (10) ◽  
pp. S409-S413 ◽  
Author(s):  
Walter H. G. Lewin ◽  
George W. Clark ◽  
William B. Smith

A complete X-ray survey of the northern sky has been made in the energy range 20–100 keV. Spectra are given for Cyg X-1 and Tau X-1. Intensity ratios (Cyg X-1/Tau X-1) of 0.84 ± 0.10 and 1.30 ± 0.25 were derived in the 20–70 keV range from data obtained on July 19, 1966 and February 13, 1967, respectively. Observations on Sco X-1 and the Coma cluster show upper limits which are quite different from results reported by other groups.


1996 ◽  
Vol 152 ◽  
pp. 289-293
Author(s):  
R.G. West ◽  
R. Willingale ◽  
J.P. Pye ◽  
T.J. Sumner

We present the results of an attempt to locate the signature of the diffuse soft X-ray background in the ROSAT Wide-Field Camera (WFC) all-sky survey. After removal of non-cosmic background sources (eg. energetic charged particles), the field-of-view integrated count rate in the WFC S1a filter (90–185 eV) shows no consistent variation with Galactic latitude or longitude. We place limits on the signal from the soft X-ray background (SXRB) in the WFC, and show that these limits conflict with the observations of the Wisconsin Sky Survey if the SXRB in this energy range is assumed to be produced by a thermal plasma of cosmic abundance and a temperature T ~ 106 K within d ~ 100 pc of the Sun.


2019 ◽  
Vol 488 (4) ◽  
pp. 5935-5940 ◽  
Author(s):  
N Aksaker ◽  
A Akyuz ◽  
S Avdan ◽  
H Avdan

ABSTRACT We present the results of a search for optical counterparts of ultraluminous X-ray source (ULX) X-1 in the nearby galaxy NGC 2500 by using archival images taken with the Hubble Space Telescope Wide Field Camera (WFC3)/UVIS. We identified four optical sources as possible counterparts within the 2σ error radius of 0$^{\prime \prime }_{.}$3 in the images. However, only two of them were investigated as candidates for counterparts due to their point-like features and their identification in various filters. These two faint candidates have absolute magnitudes of MV ≈ −3.4 and −3.7. The spectral energy distributions of two candidates were modelled by a power-law spectrum with a photon index (α) ∼1.5, but the spectrum of one candidate shows a deviation. This may suggest that at least two components are responsible for the optical emission. The red part of the spectrum could arise from the companion star and the blue part could be interpreted as an evidence of reprocessing of the X-rays from the disc.


Sign in / Sign up

Export Citation Format

Share Document