scholarly journals Lorentz Scattering of Interplanetary Dust Grains

1985 ◽  
Vol 85 ◽  
pp. 417-420
Author(s):  
P. Barge ◽  
R. Pellat ◽  
J. Millet

AbstractThe scattering of dust grains orbits due to recurrent sectors of the interplanetary magnetic field is reinvestigated with a better formalism. Our method reveals the resonant character of the diffusion and is well suited for the problem. The spreads in the orbital parameters are found less important than believed untill now and to vary rapidly with eccentricity and semi-major axis. Only the small dielectric grains with size less than 0.5 μm may be scattered by the Lorentz force fluctuations; the main diffusion occurs in inclination and near the sun (20-60 R⊙).

Author(s):  
Gloria Guilluy ◽  
Alessandro Sozzetti ◽  
Paolo Giacobbe ◽  
Aldo S. Bonomo ◽  
Giuseppina Micela

AbstractSince the first discovery of an extra-solar planet around a main-sequence star, in 1995, the number of detected exoplanets has increased enormously. Over the past two decades, observational instruments (both onboard and on ground-based facilities) have revealed an astonishing diversity in planetary physical features (i. e. mass and radius), and orbital parameters (e.g. period, semi-major axis, inclination). Exoplanetary atmospheres provide direct clues to understand the origin of these differences through their observable spectral imprints. In the near future, upcoming ground and space-based telescopes will shift the focus of exoplanetary science from an era of “species discovery” to one of “atmospheric characterization”. In this context, the Atmospheric Remote-sensing Infrared Exoplanet Large (Ariel) survey, will play a key role. As it is designed to observe and characterize a large and diverse sample of exoplanets, Ariel will provide constraints on a wide gamut of atmospheric properties allowing us to extract much more information than has been possible so far (e.g. insights into the planetary formation and evolution processes). The low resolution spectra obtained with Ariel will probe layers different from those observed by ground-based high resolution spectroscopy, therefore the synergy between these two techniques offers a unique opportunity to understanding the physics of planetary atmospheres. In this paper, we set the basis for building up a framework to effectively utilise, at near-infrared wavelengths, high-resolution datasets (analyzed via the cross-correlation technique) with spectral retrieval analyses based on Ariel low-resolution spectroscopy. We show preliminary results, using a benchmark object, namely HD 209458 b, addressing the possibility of providing improved constraints on the temperature structure and molecular/atomic abundances.


2018 ◽  
Vol 120 (3) ◽  
Author(s):  
M. Amenomori ◽  
X. J. Bi ◽  
D. Chen ◽  
T. L. Chen ◽  
W. Y. Chen ◽  
...  

1982 ◽  
Vol 4 (4) ◽  
pp. 359-362 ◽  
Author(s):  
D.B. Melrose ◽  
R.G. Hewitt ◽  
A.J. Parle

Since the work of Wu and Lee (1979) there has been renewed interest in the classical theory of electron cyclotron masers (Lee and Wu 1980, Lee et al. 1980, Wu et al. 1981, 1982, Hewitt et al. 1981, 1982, Melrose et al. 1982, Omidi and Gurnett 1982, Melrose and Dulk 1982). A useful idea in these recent developments of the classical theory concerns a geometric interpretation of the classical gyroresonance conditionwhere Ωe, is the nonrelativistic gyrofrequency, s = 0, ± 1, ± 2,… is the harmonic number, is the Lorentz factor and ║ and ┴ denote components parallel and perpendicular to the magnetic field. In v┴ − v║ space (1) represents an ellipse with centre v║ = vc, v┴ = 0, eccentricity e0 and semi-major axis V parallel to the v┴ axis, with


1976 ◽  
Vol 71 ◽  
pp. 113-118
Author(s):  
P. Ambrož

The measurement of the magnitude of the limb effect was homogenized in time and a recurrent period of maxima of 27.8 days was found. A relation was found between the maximum values of the limb effect of the redshift, the boundaries of polarities of the interplanetary magnetic field, the characteristic large-scale distribution of the background magnetic fields and the complex of solar activity.


Author(s):  
Thomas Wiegelmann

Magnetohydrodynamic equilibria are time-independent solutions of the full magnetohydrodynamic (MHD) equations. An important class are static equilibria without plasma flow. They are described by the magnetohydrostatic equations j×B=∇p+ρ∇Ψ,∇×B=μ0j,∇·B=0. B is the magnetic field, j the electric current density, p the plasma pressure, ρ the mass density, Ψ the gravitational potential, and µ0 the permeability of free space. Under equilibrium conditions, the Lorentz force j×B is compensated by the plasma pressure gradient force and the gravity force. Despite the apparent simplicity of these equations, it is extremely difficult to find exact solutions due to their intrinsic nonlinearity. The problem is greatly simplified for effectively two-dimensional configurations with a translational or axial symmetry. The magnetohydrostatic (MHS) equations can then be transformed into a single nonlinear partial differential equation, the Grad–Shafranov equation. This approach is popular as a first approximation to model, for example, planetary magnetospheres, solar and stellar coronae, and astrophysical and fusion plasmas. For systems without symmetry, one has to solve the full equations in three dimensions, which requires numerically expensive computer programs. Boundary conditions for these systems can often be deduced from measurements. In several astrophysical plasmas (e.g., the solar corona), the magnetic pressure is orders of magnitudes higher than the plasma pressure, which allows a neglect of the plasma pressure in lowest order. If gravity is also negligible, Equation 1 then implies a force-free equilibrium in which the Lorentz force vanishes. Generalizations of MHS equilibria are stationary equilibria including a stationary plasma flow (e.g., stellar winds in astrophysics). It is also possible to compute MHD equilibria in rotating systems (e.g., rotating magnetospheres, rotating stellar coronae) by incorporating the centrifugal force. MHD equilibrium theory is useful for studying physical systems that slowly evolve in time. In this case, while one has an equilibrium at each time step, the configuration changes, often in response to temporal changes of the measured boundary conditions (e.g., the magnetic field of the Sun for modeling the corona) or of external sources (e.g., mass loading in planetary magnetospheres). Finally, MHD equilibria can be used as initial conditions for time-dependent MHD simulations. This article reviews the various analytical solutions and numerical techniques to compute MHD equilibria, as well as applications to the Sun, planetary magnetospheres, space, and laboratory plasmas.


1985 ◽  
Vol 83 ◽  
pp. 179-180
Author(s):  
Cl. Froeschlé

We investigated the orbital evolution of Quadrantid-like meteor streams situated in the vicinity of the 2/1 resonance with Jupiter. For the starting orbital elements we took the values of the orbital elements of the Quadrantid meteor stream except for the semi-major axis which was varied between a = 3.22 and a = 3.34 AU. We considered these meteor streams as a ring and we investigated the resonant effect on the dispersion of this ring over a period of 13 000 years. Only gravitational forces due to the Sun and due to Jupiter were taken into account.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Tanmay Kumar Poddar ◽  
Subhendra Mohanty ◽  
Soumya Jana

AbstractThe standard model leptons can be gauged in an anomaly free way by three possible gauge symmetries namely $${L_e-L_\mu }$$ L e - L μ , $${L_e-L_\tau }$$ L e - L τ , and $${L_\mu -L_\tau }$$ L μ - L τ . Of these, $${L_e-L_\mu }$$ L e - L μ and $${L_e-L_\tau }$$ L e - L τ forces can mediate between the Sun and the planets and change the perihelion precession of planetary orbits. It is well known that a deviation from the $$1/r^2$$ 1 / r 2 Newtonian force can give rise to a perihelion advancement in the planetary orbit, for instance, as in the well known case of Einstein’s gravity (GR) which was tested from the observation of the perihelion advancement of the Mercury. We consider the long range Yukawa potential which arises between the Sun and the planets if the mass of the gauge boson is $$M_{Z^{\prime }}\le \mathcal {O}(10^{-19})\mathrm {eV}$$ M Z ′ ≤ O ( 10 - 19 ) eV . We derive the formula of perihelion advancement for Yukawa type fifth force due to the mediation of such $$U(1)_{L_e-L_{\mu ,\tau }}$$ U ( 1 ) L e - L μ , τ gauge bosons. The perihelion advancement for Yukawa potential is proportional to the square of the semi major axis of the orbit for small $$M_{Z^{\prime }}$$ M Z ′ , unlike GR where it is largest for the nearest planet. For higher values of $$M_{Z^{\prime }}$$ M Z ′ , an exponential suppression of the perihelion advancement occurs. We take the observational limits for all planets for which the perihelion advancement is measured and we obtain the upper bound on the gauge boson coupling g for all the planets. The Mars gives the stronger bound on g for the mass range $$\le 10^{-19}\mathrm {eV}$$ ≤ 10 - 19 eV and we obtain the exclusion plot. This mass range of gauge boson can be a possible candidate of fuzzy dark matter whose effect can therefore be observed in the precession measurement of the planetary orbits.


2020 ◽  
Vol 24 (1) ◽  
pp. 56-60
Author(s):  
Mohamed R. Amin

AbstractThe focus of this paper is the design of a self-maintenance orbit using two natural forces against each other. The effect of perturbations due to Earth's oblateness up to the third order on both the semi-major axis and eccentricity for a low Earth orbit satellite together with the perturbation due to air drag on the same orbital parameters were used, in order to create self-maintenance orbits. Numerical results were simulated for a low earth orbit satellite, which substantiates the applicability of the results.


Sign in / Sign up

Export Citation Format

Share Document