A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part I: design and evaluation

Robotica ◽  
2009 ◽  
Vol 27 (1) ◽  
pp. 131-146 ◽  
Author(s):  
Vishalini Bundhoo ◽  
Edmund Haslam ◽  
Benjamin Birch ◽  
Edward J. Park

SUMMARYIn this paper, a new biomimetic tendon-driven actuation system for prosthetic and wearable robotic hand applications is presented. It is based on the combination of compliant tendon cables and one-way shape memory alloy (SMA) wires that form a set of agonist–antagonist artificial muscle pairs for the required flexion/extension or abduction/adduction of the finger joints. The performance of the proposed actuation system is demonstrated using a 4 degree-of-freedom (three active and one passive) artificial finger testbed, also developed based on a biomimetic design approach. A microcontroller-based pulse-width-modulated proportional-derivation (PWM-PD) feedback controller and a minimum jerk trajectory feedforward controller are implemented and tested in anad hocfashion to evaluate the performance of the finger system in emulating natural joint motions. Part II describes the dynamic modeling of the above nonlinear system, and the model-based controller design.

Robotica ◽  
2009 ◽  
Vol 28 (5) ◽  
pp. 675-687 ◽  
Author(s):  
Gabriele Gilardi ◽  
Edmund Haslam ◽  
Vishalini Bundhoo ◽  
Edward J. Park

SUMMARYIn this paper, the dynamics and biomimetic control of an artificial finger joint actuated by two opposing one-way shape memory alloy (SMA) muscle wires that are configured in a double spring-biased agonist–antagonist fashion is presented. This actuation system, which was described in Part I, forms the basis for biomimetic tendon-driven flexion/extension and abduction/adduction of the artificial finger. The work presented in this paper centres on thermomechanical modelling of the SMA wire, including both major and minor hysteresis loops in the phase transformation model, and co-operative control strategy of the agonist–antagonist muscle pair using a pulse-width-modulated proportional-integral-derivation (PWM–PID) controller. Parametric analysis and identification are carried out based on both simulation and experimental results. The performance advantage of the proposed co-operative control is shown using the metacarpophalangeal joint of the artificial finger.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Dorin Copaci ◽  
Enrique Cano ◽  
Luis Moreno ◽  
Dolores Blanco

The elbow joint is a complex articulation composed of the humeroulnar and humeroradial joints (for flexion-extension movement) and the proximal radioulnar articulation (for pronation-supination movement). During the flexion-extension movement of the elbow joint, the rotation center changes and this articulation cannot be truly represented as a simple hinge joint. The main goal of this project is to design and assemble a medical rehabilitation exoskeleton for the elbow with one degree of freedom for flexion-extension, using the rotation center for proper patient elbow joint articulation. Compared with the current solutions, which align the exoskeleton axis with the elbow axis, this offers an ergonomic physical human-robot interface with a comfortable interaction. The exoskeleton is actuated with shape memory alloy wire-based actuators having minimum rigid parts, for guiding the actuators. Thanks to this unusual actuation system, the proposed exoskeleton is lightweight and has low noise in operation with a simple design 3D-printed structure. Using this exoskeleton, these advantages will improve the medical rehabilitation process of patients that suffered stroke and will influence how their lifestyle will change to recover from these diseases and improve their ability with activities of daily living, thanks to brain plasticity. The exoskeleton can also be used to evaluate the real status of a patient, with stroke and even spinal cord injury, thanks to an elbow movement analysis.


2015 ◽  
Vol 1115 ◽  
pp. 454-457 ◽  
Author(s):  
Alala M. Ba Hamid ◽  
Mohatashem R. Makhdoomi ◽  
Tanveer Saleh ◽  
Moinul Bhuiyan

In Malaysia, every year approximately 40000 people suffer from stroke and many of them become immobilized as an after effect. Rehabilitation robotics to assist disabled people has drawn significant attention by the researchers recently. This project also aims to contribute to this field. This paper presents a Shape Memory Alloy (SMA) actuated wearable assistive robotic hand for grasping. The proposed design is compact and sufficiently light to be used as an assistive hand. It is a joint less structure, has the potential because the human skeleton and joint replace the robot’s conventional structure. This design has been implemented on index and thumb fingers to enable grasping. Shape memory alloy springs and bias force mechanism are used for purpose of hand’s flexion and extension. This paper describes the mechatronic design of the wearable hand, experimental study of actuation unit and sensory system. Open loop experiments are conducted to understand the hand characterization and grip force provided by index finger. Current, temperature, extension and contraction of shape memory alloy springs are reported. This mechanism requires approximately 2A current for the SMA to actuate which provides maximum of 1.6N of gripping force. Conducted experiments show promising results that encourage further developments.


2020 ◽  
Vol 31 (13) ◽  
pp. 1543-1556
Author(s):  
Navid Moslemi ◽  
Soheil Gohari ◽  
Farzin Mozafari ◽  
Mohsen Gol Zardian ◽  
Colin Burvill ◽  
...  

The knee plays a significant role in locomotion and stability of the entire body through supporting the body weight and assisting the lower body kinematics during walking. However, the knee is at constant risk of becoming weakened due to disease, age, and accidents. One approach to treating weakened knee is wearing an assistive knee brace. To design a clinical knee brace, many factors such as weight and compliant mechanism should be considered. In this study, a novel smart assistive knee brace mechanism incorporated with wire actuators made of shape memory alloys is proposed to ameliorate the issues associated with weight and flexibility of existing brace designs. Unlike earlier studies, the proposed orthosis includes pressure sensor, shape memory actuator, and smart linkage. Furthermore, two distinct shape memory alloy actuator design concepts with improved stiffness are developed, and the best option is chosen systematically and prototyped. The novel mechanism proposed in this research overcomes the weight of the lower limb during swing phase using the combined shape memory alloy actuation and feed-forward controller design. As such, it can be used as a potential replacement to its conventional counterparts when the higher weight reduction as well as a flexible and controllable mechanism are simultaneously sought.


2019 ◽  
Vol 9 (19) ◽  
pp. 4025 ◽  
Author(s):  
Jaeyeon Jeong ◽  
Ibrahim Bin Yasir ◽  
Jungwoo Han ◽  
Cheol Hoon Park ◽  
Soo-Kyung Bok ◽  
...  

In this paper, we propose a shape memory alloy (SMA)-based wearable robot that assists the wrist motion for patients who have difficulties in manipulating the lower arm. Since SMA shows high contraction strain when it is designed as a form of coil spring shape, the proposed muscle-like actuator was designed after optimizing the spring parameters. The fabricated actuator shows a maximum force of 10 N and a maximum contraction ratio of 40%. The SMA-based wearable robot, named soft wrist assist (SWA), assists 2 degrees of freedom (DOF) wrist motions. In addition, the robot is totally flexible and weighs 151g for the wearable parts. A maximum torque of 1.32 Nm was measured for wrist flexion, and a torque of larger than 0.5 Nm was measured for the other motions. The robot showed the average range of motion (ROM) with 33.8, 30.4, 15.4, and 21.4 degrees for flexion, extension, ulnar, and radial deviation, respectively. Thanks to the soft feature of the SWA, time cost for wearing the device is shorter than 2 min as was also the case for patients when putting it on by themselves. From the experimental results, the SWA is expected to support wrist motion for diverse activities of daily living (ADL) routinely for patients.


Author(s):  
Ali Ahmadi ◽  
Mohammad Mahdavian ◽  
Nafiseh Faridi Rad ◽  
Aghil Yousefi-Koma ◽  
Fatemeh Alidoost ◽  
...  

Author(s):  
Garrett Waycaster ◽  
Sai-Kit Wu ◽  
Tad Driver ◽  
Xiangrong Shen

This paper describes the design and control of a compact and flexible pneumatic artificial muscle (PAM) actuation system for bio-robotic systems. The entire paper is divided into two parts, with the first part covering the mechanism design and the second part covering the corresponding controller design. This novel system presented in this part incorporates two new features, including a variable-radius pulley based PAM actuation mechanism, and a spring-return mechanism to replace the PAM in the “weak” direction. With the pulley radius as a function of the joint angle, this new feature enables the designer to freely modulate the shape of the torque curve, and thus achieves a significantly higher flexibility than the traditional configuration. The other new feature, the spring-return mechanism, is inspired by the fact that a large number of bio-robotic systems require a significantly larger torque in one direction than the other.


Author(s):  
Xiangrong Shen ◽  
Daniel Christ

This paper describes the design and control of a new monopropellant-powered muscle actuation system for robotic systems, especially the mobile systems inspired by biological principles. Based on the pneumatic artificial muscle, this system features a high power density, as well as characteristics similar to biological muscles. By introducing the monopropellant as the energy storage media, this system utilizes the high energy density of liquid fuel and provides a high-pressure gas supply with a simple structure in a compact form. This addresses the limitations of pneumatic supplies on mobile devices and thus is expected to facilitate the future application of artificial muscles on bio-robotic systems. In this paper, design of the monopropellant-powered muscle actuation system is presented as well as a robust controller design that provides effective control for this highly nonlinear system. To demonstrate the proposed muscle actuation system, an experimental prototype was constructed on which the proposed control algorithm provides good tracking performance.


Author(s):  
Robert W. Wheeler ◽  
Othmane Benafan ◽  
Xiujie Gao ◽  
Frederick T. Calkins ◽  
Zahra Ghanbari ◽  
...  

The primary goal of the Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART) is to enable the design of revolutionary applications based on shape memory alloy (SMA) technology. In order to help realize this goal and reduce the development time and required experience for the fabrication of SMA actuation systems, several modeling tools have been developed for common actuator types and are discussed herein along with case studies, which highlight the capabilities and limitations of these tools. Due to their ability to sustain high stresses and recover large deformations, SMAs have many potential applications as reliable, lightweight, solid-state actuators. Their advantage over classical actuators can also be further improved when the actuator geometry is modified to fit the specific application. In this paper, three common actuator designs are studied: wires, which are lightweight, low-profile, and easily implemented; springs, which offer actuation strokes upwards of 200% at reduced mechanical loads; and torque tubes, which can provide large actuation forces in small volumes and develop a repeatable zero-load actuation response (known as the two-way shape memory effect). The modeling frameworks, which have been implemented in the design tools, are developed for each of these frequently used SMA actuator types. In order to demonstrate the versatility and flexibility of the presented design tools, as well as validate their modeling framework, several design challenges were completed. These case studies include the design and development of an active hinge for the deployment of a solar array or foldable space structure, an adaptive solar array deployment and positioning system, a passive air temperature controller for the regulation of flow temperatures inside of a jet engine, and a redesign of the Corvette active hatch, which allows for pressure equalization of the car interior. For each of the presented case studies, a prototype or proof-of-concept was fabricated and the experimental results and lessons learned are discussed. This analysis presents a collection of CASMART collaborative best practices in order to allow readers to utilize the available design tools and understand their modeling principles. These design tools, which are based on engineering models, can provide first-order optimal designs and are a basic and efficient method for either demonstrating design feasibility or refining design parameters. Although the design and integration of an SMA-based actuation system always requires application- and environment-specific engineering considerations, common modeling tools can significantly reduce the investment required for actuation system development and provide valuable engineering insight.


Sign in / Sign up

Export Citation Format

Share Document