Three-dimensional swimming robotic fish with slide-block structure: design and realization

Robotica ◽  
2013 ◽  
Vol 32 (5) ◽  
pp. 823-834
Author(s):  
Yongnan Jia ◽  
Long Wang

SUMMARYThis paper focuses on the mechanism design of a slide-block structure and its application on a biomimetic modular robotic fish for three-dimensional swimming. First, as a barycenter-adjustor, the slide-block structure is integrated into a mechanical design of a robotic fish, which is constructed by a control module, a driving module, and a fan-shaped caudal fin. The three-dimensional locomotion of robotic fish is decomposed into two-dimensional locomotion in horizontal plane and ascent–descent locomotion in vertical plane. Both the kinematics of the horizontal swim and the dynamics of the ascent–descent swim are analyzed by the curve fitting method. Finally, experimental results validate the three-dimensional swimming capability of the robotic fish. Furthermore, the impact of two design parameters on the swimming capability of the robotic fish is discussed by the experimental method. The experimental results confirm that the robotic fish with one driving module and a fan-shaped low-aspect-ratio caudal foil can produce higher propulsive speed than other parameter combinations.

2016 ◽  
Vol 28 (12) ◽  
pp. 1614-1626 ◽  
Author(s):  
Wan-Li Song ◽  
Dong-Heng Li ◽  
Yan Tao ◽  
Na Wang ◽  
Shi-Chao Xiu

The aim of this work is to investigate the effect of the small magnetorheological fluid gap on the braking performance of the magnetorheological brake. In this article, theoretical analyses of the output torque are given first, and then the operating principle and design details of the magnetorheological brake whose magnetorheological fluid gap can be altered are presented and discussed. Next, the magnetic circuit of the proposed magnetorheological brake is conducted and further followed by a magnetostatic simulation of the magnetorheological brakes with different sizes of fluid gap. A prototype of the magnetorheological brake is fabricated and a series of tests are carried out to evaluate the braking performance and torque stability, as well as the verification of the simulation results. Experimental results show that the braking torque increases with the increase in the current, and the difference for the impact of the fluid gap on braking performance is huge under different currents. The rules, which the experimental results show, have an important significance on both the improvement of structure design for magnetorheological brake and the investigation of the wear property under different fluid gaps.


Author(s):  
Satenik Harutyunyan ◽  
Davresh Hasanyan

A non-linear theoretical model including bending and longitudinal vibration effects was developed for predicting the magneto electric (ME) effects in a laminate bar composite structure consisting of magnetostrictive and piezoelectric multi-layers. If the magnitude of the applied field increases, the deflection rapidly increases and the difference between experimental results and linear predictions becomes large. However, the nonlinear predictions based on the present model well agree with the experimental results within a wide range of applied electric field. The results of the analysis are believed to be useful for materials selection and actuator structure design of actuator in actuator fabrication. It is shown that the problem for bars of symmetrical structure is not divided into a plane problem and a bending problem. A way of simplifying the solution of the problem is found by an asymptotic method. After solving the problem for a laminated bar, formula that enable one to change from one-dimensional required quantities to three dimensional quantities are obtained. The derived analytical expression for ME coefficients depend on vibration frequency and other geometrical and physical parameters of laminated composites. Parametric studies are presented to evaluate the influences of material properties and geometries on strain distribution and the ME coefficient. Analytical expressions indicate that the vibration frequency strongly influences the strain distribution in the laminates, and that these effects strongly influence the ME coefficients. It is shown that for certain values of vibration frequency (resonance frequency), the ME coefficient becomes infinity; as a particular case, low frequency ME coefficient were derived as well.


Author(s):  
Feitian Zhang ◽  
Fumin Zhang ◽  
Xiaobo Tan

Gliding robotic fish, a new type of underwater robot, combines both strengths of underwater gliders and robotic fish, featuring long operation duration and high maneuverability. In this paper, we present both analytical and experimental results on a novel gliding motion, tail-enabled three-dimensional (3D) spiraling, which is well suited for sampling a water column. A dynamic model of a gliding robotic fish with a deflected tail is first established. The equations for the relative equilibria corresponding to steady-state spiraling are derived and then solved recursively using Newton's method. The region of convergence for Newton's method is examined numerically. We then establish the local asymptotic stability of the computed equilibria through Jacobian analysis and further numerically explore the basins of attraction. Experiments have been conducted on a fish-shaped miniature underwater glider with a deflected tail, where a gliding-induced 3D spiraling maneuver is confirmed. Furthermore, consistent with model predictions, experimental results have shown that the achievable turning radius of the spiraling can be as small as less than 0.4 m, demonstrating the high maneuverability.


2005 ◽  
Vol 128 (1) ◽  
pp. 337-345 ◽  
Author(s):  
Heng Pan ◽  
Robert G. Landers ◽  
Frank Liou

This paper presents an approach for modeling powder delivery system dynamics in low flow rate applications. Discrete particle modeling (DPM) is utilized to analyze the motion of individual powder particles. In DPM, an irregular bouncing model is employed to represent the powder dispersion in the powder delivery system induced by non-spherical particle-wall collisions. A three-dimensional friction collision model is utilized to simulate the interactions between particles and the powder delivery system walls. The modeling approach is experimentally verified and simulation studies are conducted to explore the effect of powder delivery system mechanical design parameters (i.e., tube length, diameter, and angle, number of tubes and meshes, and mesh orientation and size) on the powder flow dynamics. The simulation studies demonstrate that the powder delivery system dynamics can be modeled by a pure transport delay coupled with a first order system.


2016 ◽  
Vol 88 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Chaoyu Chen ◽  
Zhaoqun Du ◽  
Weidong Yu ◽  
Tilak Dias

The main content dealt with in the paper is to present a kind of weft-knitted spacer fabric with high porosity. It is a kind of three-dimensional textile fabric with a sandwich structure that consists of a middle layer of multifilament and two outer layers of plain-knitted fabric. Compared with traditional warp-knitted spacer fabric as cushion mats, weft-knitted spacer fabric is well used as apparel for good softness, thermal/moisture comfort, and air permeability. Therefore, three structures were designed and nine samples were prepared by choosing plain-knitted fabric as the outer layers and selecting soft and thin multifilament as a middle layer. Experimental results show that this kind of weft-knitted spacer fabrics has high porosity, greater than 86%, and also demonstrate that the weft-knitted spacer fabric is suitable for comfortable apparel based on experimental results of air permeability, compression properties, stiffness, and thermal insulation properties.


2018 ◽  
Vol 41 (4) ◽  
pp. 990-1001
Author(s):  
Song Ma ◽  
Jianguo Tan ◽  
Xiankai Li ◽  
Jiang Hao

This paper establishes a novel mathematical model for computing the plume flow field of a carrier-based aircraft engine. Its objective is to study the impact of jet exhaust gases with high temperature, high speed and high pressure on the jet blast deflector. The working condition of the nozzle of a fully powered on engine is first determined. The flow field of the exhaust jet is then numerically simulated at different deflection angle using the three-dimensional Reynolds averaged Navier–Stokes equations and the standard [Formula: see text]-[Formula: see text] turbulence method. Moreover, infra-red temperature tests are further carried out to test the temperature field when the jet blast deflector is at the [Formula: see text] deflection angle. The comparison between the simulation results and the experimental results show that the proposed computation model can perfectly describe the system. There is only 8–10% variation between them. A good verification is achieved. Moreover, the experimental results show that the jet blast deflector plays an outstanding role in driving the high-temperature exhaust gases. It is found that [Formula: see text] may be the best deflection angle to protect the deck and the surrounding equipment effectively. These data results provide a valuable basis for the design and layout optimization of the jet blast deflector and deck.


Author(s):  
Andrzej F. Nowakowski ◽  
Franck C. G. A. Nicolleau ◽  
S. M. Muztaba Salim

The computational studies on the flow structure, design and performance of a target fluidic flowmeter have been carried out. The computational challenge was to find a universal approach to study a wide range of flow regimes. To this end the Detached Eddy Simulation (DES) approach for unsteady flows was applied. The numerical technique enabled to accurately reproduced three dimensional flow structures in a target fluidic flowmeter. The signal analysis of the obtained results was conducted for a range of Reynolds numbers from laminar case up to 4000. The results show that a number of factors such as meter geometry and aspect ratio can influence the performance of the flow meter significantly. A minimum Reynolds number constraint for the measurements to be accurate was evaluated for various design parameters. The significance of using knife edges which influence boundary layer separation was also established. The experimental data, which were obtained for a prototype of flowmeter setup were used to validate numerical tools in the important area of low Reynolds number flows.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 120 ◽  
Author(s):  
Sergii Chernenko ◽  
Eduard Klimov ◽  
Andrii Chernish ◽  
Olexandr Pavlenko ◽  
Volodymyr Kukhar

The results of the investigation of the turning kinematics of the steerable wheels of the KrAZ-7634NE off-road vehicle with a wheel formula 8x8 and two front steer axles are given. The theoretical relations between the steer angles of the steerable wheels on the basis of the scheme of double-axle steering turning of the vehicle are shown. The mathematical model of flat four-bar vehicle steering linkage is developed, it determines the relation between the steering linkage left and right steering arms turning angles at any turning radius of the vehicle. KrAZ-7634HE steering three-dimensional model was created and simulation technique of its work was carried out using Creo software. It has been shown that the flat steering linkage model provides sufficient accuracy of calculations in analysis of turning kinematics. The design data can be used for any vehicles that have a similar steering linkage, they allow to analyze the impact of the vehicle design parameters on the turning kinematics and optimize them. Further study of the impact of the kingpin inclinations on the steering linkage kinematic and power characteristics are required.  


Author(s):  
Agus P. Sasmito ◽  
Tariq Shamim ◽  
Erik Birgersson ◽  
Arun S. Mujumdar

In open-cathode polymer electrolyte fuel cell (PEFC) stacks, a significant temperature rise can exist due to insufficient cooling, especially at higher current densities. To improve stack thermal management while reducing the cost of cooling, we propose a forced air-convection open-cathode fuel cell stack with edge cooling (fins). The impact of the edge cooling is studied via a mathematical model of the three-dimensional two-phase flow and the associated conservation equations of mass, momentum, species, energy, and charge. The model includes the stack, ambient, fan, and fins used for cooling. The model results predict better thermal management and stack performance for the proposed design as compared to the conventional open-cathode stack design, which shows potential for practical applications. Several key design parameters—fin material and fin geometry—are also investigated with regard to the stack performance and thermal management.


1991 ◽  
Vol 58 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Sridhav Krishnaswamy ◽  
Ares J. Rosakis ◽  
G. Ravichandran

In Part I of this paper, the question of the extent of dominance of the mode I asymptotic elastodynamic crack-tip field (the KdI-field) was studied experimentally. Here, the results of two and three-dimensional elastodynamic finite element simulations of the drop-weight experiments are reported. The load records as obtained from the impact hammer and supports of the drop-weight loading device were used as boundary tractions in the numerical simulations. For the laboratory specimen studied, the results of the simulations indicate that the asymptotic elastodynamic field is not an adequate description of the actual fields prevailing over any sizeable region around the crack tip. This confirms the experimental results of Part I which showed that three-dimensional and transient effects necessarily have to be taken into account for valid interpretation of experimental results.


Sign in / Sign up

Export Citation Format

Share Document