Effect of days of regrowth of ryegrass(Lolium perenne)on fermentation characteristics: comparison of the nylon bag and gas production techniques

1998 ◽  
Vol 22 ◽  
pp. 40-43
Author(s):  
P. Chilibroste ◽  
S. Tamminga ◽  
B. A. Williams

The nylon bag technique (NBT) has been used widely to characterize the washable (W), insoluble potentially degradable (D) and insoluble non-degradable (U) fractions of grasses (e.g. van Vuuren, 1993) and concentrates (Tammingaet al., 1990). Recently the gas production technique (GPT) has been proposed as a method to evaluate the fermentation characteristics of different foods (Theodorouet al., 1994). Both techniques have shown good correlation with dry matter intake (Khazaalet al., 1993). One of the potential advantages of GPT over NBT is the ability to differentiate fermentation patterns (Grootet al., 1996) that might be related to changes in food composition. This trial was part of a larger grazing experiment and aimed to compare GPT and NBT when applied to samples of ryegrass at different ages. A specific objective was to determine whether or not GPT could extract more information concerning the fermentation patterns of different ryegrass fractions and how these patterns changed as a result of plant maturity.

1998 ◽  
Vol 22 ◽  
pp. 172-174
Author(s):  
D. L. Romney ◽  
F. C. Cadario ◽  
E. Owen ◽  
A .H. Murray

Parameters from in vitro gas production techniques could have potential as predictors of dry-matter intake (DMI) and digestibility. Fermentation is usually carried out under conditions where nitrogen (N) is not limiting. Therefore where N supply is a constraint to intake and digestibility, prediction equations may be inaccurate. This study compared the use of N-free and N-rich media in an in vitro fermentation method (Theodorou et al., 1994) and studied the relationships between in vitro and in vivo parameters obtained using both media.


1999 ◽  
Vol 69 (3) ◽  
pp. 647-655 ◽  
Author(s):  
P. Chilibrostet ◽  
B. A. Williams ◽  
S. Tamminga ◽  
S. Calabro

AbstractThe effect of the duration of grazing (experiment 1) and starvation time and placement in the rumen of inert bulk material before grazing (experiment 2), on the rumen content ferment ability, was investigated by means of measuring cumulative gas production. In experiment 1, a comparison was made of four durations of grazing (1, 1·75, 2·50 and 3·25 h) after overnight starvation. Rumen samples taken from the cows after 1 h of grazing had higher values of total accumulated gas with less (P < 0·05) time required to reach the maximum fermentation rate than cows grazed for 3·25 h. Following grazing, a 7·75·h starvation period was imposed on the four treatments. The extent of fermentation was significantly lower (P < 0·01) after starvation than immediately after grazing (49·7 v. 60·8% of incubated dry matter (DM), respectively). Experiment 2 consisted of a factorial combination of two durations of starvation before grazing (16·5 (LS) and 2·5 (SS) h) with the presence or absence in the rumen of 12·5 kg of a synthetic indigestible material. Before grazing the total accumulated gas production was less (P < 0·05) for the LS than for the SS cows. After the grazing session, the total gas of rumen samples from the LS cows was significantly higher (P < 0·05) than for the SS cows.This was in agreement with the observed higher DM intake during grazing and DM rumen pools after grazing in LS cows. For both starvation periods, the presence of inert rumen bulk led to a higher total gas, a shorter half-time and less DM left unfermented. The measurement of fermentation kinetics by cumulative gas production was suitable to detect changes in rumen content fermentation patterns due to the clearance of material from the rumen (effect of starvation) or DM intake during the grazing sessions.


Author(s):  
N.D. Meads ◽  
R. Tahmasbi ◽  
N. Jantasila

Greenhouse gas (GHG) emissions from livestock are an important consideration in environmental science. Estimating GHG production can be problematic at a farm or animal level, and requires controlled conditions to produce real data. An in vitro gas production technique (IVGPT) was developed to evaluate forage-based total mixed rations in digestion kinetics and GHG production. Two hundred and sixty samples of complete mixed rations (MR), which included a pasture component used in commercial lactating dairy herds, were collected around NZ across three calendar years, 2017-2019. Twenty of the 260 samples were 100% total mixed rations (TMR) with no pasture content. The samples were submitted for proximate analysis as well as IVGPT to generate GHG production figures. The results showed an average total gas production (TGP) of 129.82 ml/g dry matter (DM), 78.6% true digestibility (TDMD), 125.06 mg/g DM microbial biomass (MB), 20.16 g CH4/kg DM, and 12.8 MJME/kg DM. The average nutrient composition was dry matter (DM) 31.55%, crude protein (CP) 21.85%, neutral detergent fibre (NDF) 44.35%, and starch 7.03%. The IVGPT CH4 production was negatively correlated to NDF (r=-0.312), ADF (r=-0.193), TGP (r=-0.216), and was positively correlated with TDMD (r=0.250), apparent digestibility (ADMD) (r=0.614), starch (r=0.117) and volatile fatty acids (r=0.538). The MR diet showed a strong positive relationship with ADMD digestibility (P=0.01) and a negative relationship with fibre content (NDF, P=0.01 and ADF, P=0.01). However, CH4 production reduced linearly with increasing TGP (P=0.01). The results indicated that a greater CH4 production may be related to higher digestibility of mixed ration.


1999 ◽  
Vol 1999 ◽  
pp. 151-151 ◽  
Author(s):  
I.C.S. Bueno ◽  
A.L. Abdalla ◽  
S.L.S. Cabral Filho ◽  
D.M.S.S. Vitti ◽  
E. Owen ◽  
...  

The use of small ruminants, such as sheep, in metabolism studies is more convenient as handling problems are reduced and their maintenance costs are lower, in comparison with cattle. However in vivo digestibility estimates obtained at maintenance are known to differ between these two species. With the increased use ofin vitrogas production techniques, to evaluate ruminant feedingstuffs, it is of great importance to identify whether the species from which the rumen fluid inoculum is obtained has a significant influence on the results obtained.Rumen fluid samples were obtained from a non-lactating Holstein cow (C) and six wether sheep (S) offered the same diet (80 % tropical grass and 20 % dairy concentrate) and prepared so as to have similar dry matter (DM) contents and therefore potentially the microbial mass. Nine substrates (two tropical grasses 1-2, tropical alfalfa 3, barley straw 4, and five temperate grasses 5-9) were examined.


2021 ◽  
Vol 42 (6) ◽  
pp. 3399-3414
Author(s):  
Angela Rocio Poveda-Parra ◽  
Odimári Pricila Prado-Calixto ◽  
Elzânia Sales Pereira ◽  
Fernando Luiz Massaro Junior ◽  
Larissa Nóbrega de Carvalho ◽  
...  

The objective of this study was to evaluate ingredients and diets containing increasing levels of crambe cake protein replacing soybean meal protein, with in vitro ruminal fermentation parameters using a gas production technique. Diets were formulated for feedlot lambs and contained different levels of crambe cake protein (0, 250, 500, 750, and 1000 g kg-1) replacing soybean meal protein. Corn silage was used as roughage. Carbohydrate digestion rates were estimated using the in vitro gas production technique and the cumulative gas production kinetics were analyzed using the bicompartmental logistic model. The parameters values of ruminal degradation kinetics were generated using the R statistical program with the Gauss-Newton algorithm and then subjected to analysis of variance and regression (when necessary) according to a completely randomized experimental design with five treatments and five replications. Upon carbohydrate fractionation of ingredients and experimental diets, it was observed that corn grain and corn silage presented the highest levels of total carbohydrates (TC), with values of 128.3 and 464.8 g kg-1 dry matter (DM) in fraction B2, respectively. Lower TC content was found for soybean meal and crambe cake (CC). There was a predominance of fractions A + B1 in the ingredients and experimental diets. The B2 fraction decreased in the diets with the inclusion of the CC protein, and CC presented the highest C fraction. Protein fractionation (g kg-1 DM and g kg-1 crude protein - CP), the ingredients and diets showed a higher proportion of fractions A and B1 + B2. In in vitro degradation, the diet without CC (0 g kg-1 DM) showed the highest final cumulative gas production (365.04 mL g-1 of incubated DM), while the CC presented the lowest volume (166.68 mL g-1 of incubated DM). The gas volume of non-fibrous carbohydrate fermentation and fibrous carbohydrate degradation rate exhibited a quadratic effect according increasing levels of CC (Pmax = 265.8 g kg-1 DM and Pmin = 376.3 g kg-1 DM, respectively). The lag time and final gas volume showed a decreasing linear effect with increasing levels of CC protein. The degradation rate of non-fibrous carbohydrates and the final volume of fibrous carbohydrates did not differ. Replacing soybean meal protein with CC protein at the level of 250 g kg-1 of dry matter in diets formulated for feedlot lambs leads to good profiles of ruminal fermentation kinetics with respect to the degradation of fibrous and non-fibrous carbohydrates.


2011 ◽  
Vol 50 (No. 2) ◽  
pp. 60-67 ◽  
Author(s):  
A. Kamalak ◽  
O. Canbolat ◽  
Y. Gurbuz ◽  
O. Ozay

Dry matter (DM) degradation of wheat straw (WS), barley straw (BS), lucerne hay (LH) and maize silage (MS) was determined using two different techniques: (i) in vitro gas production and (ii) nylon bag degradability technique. In vitro gas production and in situ DM disappearance were measured after 3, 6, 12, 24, 48, 72 and 96 hours of incubation. In situ and in vitro DM degradation kinetics was described using the equation y = a + b (1 &ndash; e<sup>ct</sup>). In all incubations there were significant (P &lt; 0.001) correlations between gas production and in situ DM disappearance or estimated parameters ((a + b)<sub>ga</sub><sub>s</sub> and (a + b)<sub>is</sub> or (a + b)<sub>gas</sub> and EDMD<sub>is</sub>) whereas there were no significant (P &gt; 0.05) correlations between c<sub>gas</sub> and c<sub>is</sub> or b<sub>gas</sub> and b<sub>is</sub>. Gas production from the insoluble fraction (b) alone explained 98.3% of the variation of EDMD. The inclusion of gas production from the quickly soluble fraction (a) and rate constant (c) of gas production in the regression equation improved the accuracy of EDMD prediction. The correlations between the results of both methodologies seem to be sufficiently strong to predict degradability parameters from gas production parameters. It was concluded that the in vitro gas production technique has good potentiality to predict in situ DM disappearance and some DM degradation parameters. &nbsp; &nbsp;


2006 ◽  
Vol 34 ◽  
pp. 29-33
Author(s):  
Ú.T. Nogueira ◽  
R. M. Maurício ◽  
L. C. Gonçalves ◽  
N. M. Rodrigues ◽  
L. G. R. Pereira ◽  
...  

SummarySugar cane and maize silage samples were evaluated by the semi automated in vitro gas production technique. The associations between gas production and dry matter degradation (DMD) were analysed and high coefficients of determination were obtained for all the substrates. The results showed that particles losses could be influencing the DMD, including errors mostly when obtained before 6 hours of incubation. The gas alone could better predict the lag phase than the DMD before 6 hours of incubation.


2019 ◽  
Vol 99 (4) ◽  
pp. 951-954
Author(s):  
F.C. Campos ◽  
A.L. Abdalla Filho ◽  
P.S. Corrêa ◽  
C. Nazato ◽  
R.G. Monnerat ◽  
...  

The effect of six Bacillus thuringiensis (Bt) strains on diet degradability was evaluated using an in vitro gas production technique. Spores (5.7 × 106 spores) of different Bt strains (907, 1192, 2036, 2493, 2496, and S1185) plus a control (no spores) were used as treatments with four replicates (inocula) in duplicate. Fermentation processes were evaluated and ruminal microorganisms were quantified. Compared with the control, the Bt907 strain decreased dry matter (DM) and organic matter (OM) degradability without affecting the Fibrobacter succinogenes population, whereas the other strains reduced this population without altering DM and OM degradability.


2010 ◽  
Vol 159 (3-4) ◽  
pp. 96-104 ◽  
Author(s):  
M.B. Santos ◽  
G.A. Nader ◽  
P.H. Robinson ◽  
D. Kiran ◽  
U. Krishnamoorthy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document