Quantitative studies on the marine Phycomycetes between Fladenground and the mouth of the River Tay

Author(s):  
S. Raghu Kumar

SynopsisQuantitative studies on marine Phycomycetes (thraustochytrids) were carried out at 6 stations between the Fladenground area of the North Sea and the mouth of the River Tay, between September 1975 and September 1976. Five samplings were made of the surface water and the sediment during this period. The number of fungi/litre sea water or sediment increased with the proximity to the mouth of the river compared to the high seas. The fungal population exhibited a seasonal fluctuation, a high number occurring in September and an extremely low number occurring in March. The sediments revealed a very high number of propagules/litre (up to 73,000) compared to the water (up to 384).

Ocean Science ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 369-378 ◽  
Author(s):  
A. Sterl ◽  
H. van den Brink ◽  
H. de Vries ◽  
R. Haarsma ◽  
E. van Meijgaard

Abstract. The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.


1991 ◽  
Vol 24 (10) ◽  
pp. 321-322
Author(s):  
Kjell Baalsrud

The Outer Oslofjord has recently been subject to concern. 1. The Inner Oslofjord. Covers an area of 193 km2, is 160 m deep and is separated from the Outer Oslofjord by the narrow Drøbak sound with a sill depth of less than 20 metres. This part of the Oslofjord constitutes an enclosed body of sea water, sensitive to pollution, receiving sewage from approximately 650,000 inhabitants. In spite of modern sewage treatment, the fjord still suffers torn eutrophication problems resulting in reduced oxygen in the deep water, and areas of anoxic bottom water. The fjord is an important recreation area. 2. The Outer Oslofjord. Recent findings indicate that eutrophication is slowly increasing. An increasing eutrophication of the Outer Oslofjord wil also increase the need (and cost) of better sewage treatment in the Inner Oslofjord. 3. The North Sea. The quality of the water in the Oslofjord area is also dependent on the water it receives from the Skagerrak. The Skagerrak water will periodically receive polluted water from the southern North Sea and Kattegat. When these episodes coincide with water renewals between the Oslofjord and the Skagerrak, the fjord will receive polluted water from other countries. The Oslofjord water will in turn discharge into the Skagerrak, but due to the general circulation pattern, this will mainly influence the Norwegian south-east coast.


1994 ◽  
Vol 112 (2) ◽  
pp. 285-290 ◽  
Author(s):  
J. Veenstra ◽  
P. J. G. M. Rietra ◽  
J. M. Coster ◽  
E. Slaats ◽  
S. Dirks-Go

SUMMARYThe seasonal variation in the occurrence ofV. vulnificusin relation to water temperature and salinity was studied along the Dutch coast. In two consecutive yearsV. vulnificusstrains could be isolated in August when the water temperature was highest. The indole-positive strains isolated from North Sea water samples were identical to most strains isolated from human disease and from the environment. However, strains isolated from four of five patients living in countries around the North Sea were different from the North Sea isolates in that they were indole-negative and have a lower NaCl tolerance.


2014 ◽  
Vol 59 (2) ◽  
Author(s):  
Foojan Mehrdana ◽  
Qusay Bahlool ◽  
Alf Skovgaard ◽  
Jesper Kuhn ◽  
Per Kania ◽  
...  

AbstractA parasitological investigation was performed on a total of 5380 Atlantic cod larvae, post-larvae and small juveniles sampled from the North Sea during a period of five years. The copepod Caligus elongatus (Von Nordmann, 1832) and the nematode Hysterothylacium aduncum (Rudolphi, 1802) were found at a relatively high prevalence of infection (4.6% and 5.2%, respectively). The infection by both parasites showed annual and spatial variability. C. elongatus showed a higher prevalence in 1992 compared to the following years, whereas the prevalence of H. aduncum increased from 1992 to 2001.We observed a relation between parasite distribution and parameters such as latitude and water depth. Adult digeneans (Lecithaster gibbosus and Derogenes varicus) and larval cestodes were also found with lower infection rates. Since changes of infection levels coincided with increasing North Sea water temperature in the studied period, it is hypothesized that temperature may affect parasite population levels. However, it is likely that other environmental factors may contribute to the observed variations. Absence of infection intensities higher than one nematode per fish in small larvae and post-larvae suggests that host survival may be affected by a high infection pressure. The relatively high levels of infection in the younger stages of cod, and the annual/spatial variability of these infections should be considered in the understanding of the early life dynamics of the species.


2004 ◽  
Vol 1 (2) ◽  
pp. 147-157 ◽  
Author(s):  
N. Gypens ◽  
C. Lancelot ◽  
A. V. Borges

Abstract. A description of the carbonate system has been incorporated in the MIRO biogeochemical model to investigate the contribution of diatom and Phaeocystis blooms to the seasonal dynamics of air-sea CO2 exchanges in the Eastern Channel and Southern Bight of the North Sea, with focus on the eutrophied Belgian coastal waters. For this application, the model was implemented in a simplified three-box representation of the hydrodynamics with the open ocean boundary box ‘Western English Channel’ (WCH) and the ‘French Coastal Zone’ (FCZ) and ‘Belgian Coastal Zone’ (BCZ) boxes receiving carbon and nutrients from the rivers Seine and Scheldt, respectively. Results were obtained by running the model for the 1996–1999 period. The simulated partial pressures of CO2 (pCO2) were successfully compared with data recorded over the same period in the central BCZ at station 330 (51°26.05′ N; 002°48.50′ E). Budget calculations based on model simulations of carbon flow rates indicated for BCZ a low annual sink of atmospheric CO2 (−0.17 mol C m-2 y-1). On the opposite, surface water pCO2 in WCH was estimated to be at annual equilibrium with respect to atmospheric CO2. The relative contribution of biological, chemical and physical processes to the modelled seasonal variability of pCO2 in BCZ was further explored by running model scenarios with separate closures of biological activities and/or river inputs of carbon. The suppression of biological processes reversed direction of the CO2 flux in BCZ that became, on an annual scale, a significant source for atmospheric CO2 (+0.53 mol C m-2 y-1). Overall biological activity had a stronger influence on the modelled seasonal cycle of pCO2 than temperature. Especially Phaeocystis colonies which growth in spring were associated with an important sink of atmospheric CO2 that counteracted the temperature-driven increase of pCO2 at this period of the year. However, river inputs of organic and inorganic carbon were shown to increase the surface water pCO2 and hence the emission of CO2 to the atmosphere. Same calculations conducted in WCH, showed that temperature was the main factor controlling the seasonal pCO2 cycle in these open ocean waters. The effect of interannual variations of fresh water discharge (and related nutrient and carbon inputs), temperature and wind speed was further explored by running scenarios with forcing typical of two contrasted years (1996 and 1999). Based on these simulations, the model predicts significant variations in the intensity and direction of the annual air-sea CO2 flux.


Author(s):  
Robb Robinson

This chapter recounts how Winston Churchill ordered the Grand Fleet to take up their war station at the remote anchorage of Scapa Flow on 29 July 1914. It discusses Germany's invasion of Belgium that drew Britain into the conflict just within two days of the Grand Fleet's arrival in Orkney. It also theorizes how the anchorage at Scapa enabled the Royal Navy's fleet of dreadnoughts to command the North Sea and anticipate threats from its smaller German counterpart, the High Seas Fleet. The chapter cites the Koenigen Luise vessel that laid the first minefield of the Great War, implying that the British could expect the Germans to pursue an aggressive and defensive mining policy. It details how the minefield disrupted coastal shipping up and down the coast.


An overview is given of the natural systems of the North Sea: water-circulation, topography and geology of the sea floor, sediment transport, influx of trace constituents (nutrients, trace metals, organic compounds), biological systems and their interrelations. The effects of pollution and other human activities are discussed as well as the difficulties in assessing them where they are obscured by natural changes.


Sign in / Sign up

Export Citation Format

Share Document