Inputs of trace gases, particles and cloud droplets to terrestrial surfaces

Author(s):  
D. Fowler ◽  
J. H. Duyzer ◽  
D. D. Baldocchi

SynopsisThe deposition of reactive gases on terrestrial surfaces is one of the primary mechanisms by which pollutant gases are removed from the atmosphere. The chemical properties of the gases (SO2, NO2, HNO3, HCl) and of the absorbing surfaces lead to differing rates of exchange and controlling processes. The most reactive gases, HNO3, HCl (and for many surfaces NH3) exhibit negligible surface resistances; deposition velocities (Vg) appropriate for short vegetation ranging from 2 to 5 cm s−1, for forests Vg may approach 10 cm s−1. The large rates of deposition for NH3 on moorland and forests lead to annual inputs, in areas with large atmospheric concentrations of NH3 (≥ 5 μg NH3 m−3), ranging from 20 to 60 kg N ha−1. The net exchange of NH3 over cropland, attributable to deposition during vegetative growth and emission of NH3 during senescence, is less well known but believed to be small.The co-deposition of NH3 and SO2 on external surfaces of plant canopies is believed to enhance SO2deposition with reported deposition velocities over short vegetation of 2.0 cm s−1.Rates of cloud droplet deposition to vegetation have been shown to be very similar to rates of momentum deposition (i.e. Vt ≈ ram−1). These findings provide the basis for estimates of cloud deposition inputs of major ions to upland Britain where they may contribute up to 30% of the wet deposited sulphur and nitrogen.

2008 ◽  
Vol 8 (23) ◽  
pp. 6925-6938 ◽  
Author(s):  
H. Lihavainen ◽  
V.-M. Kerminen ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
J. Laakia ◽  
...  

Abstract. Physical and chemical properties of boundary layer clouds, together with relevant aerosol properties, were investigated during the first Pallas Cloud Experiment (First Pace) conducted in northern Finland between 20 October and 9 November 2004. Two stations located 6 km apart from each other at different altitudes were employed in measurements. The low-altitude station was always below the cloud layer, whereas the high-altitude station was inside clouds about 75% of the time during the campaign. Direct measurements of cloud droplet populations showed that our earlier approach of determining cloud droplet residual particle size distributions and corresponding activated fractions using continuous aerosol number size distribution measurements at the two stations is valid, as long as the cloud events are carefully screened to exclude precipitating clouds and to make sure the same air mass has been measured at both stations. We observed that a non-negligible fraction of cloud droplets originated from Aitken mode particles even at moderately-polluted air masses. We found clear evidence on first indirect aerosol effect on clouds but demonstrated also that no simple relation between the cloud droplet number concentration and aerosol particle number concentration exists for this type of clouds. The chemical composition of aerosol particles was dominated by particulate organic matter (POM) and sulphate in continental air masses and POM, sodium and chlorine in marine air masses. The inorganic composition of cloud water behaved similarly to that of the aerosol phase and was not influenced by inorganic trace gases.


2009 ◽  
Vol 9 (5) ◽  
pp. 17963-18019 ◽  
Author(s):  
J. Rangognio ◽  
P. Tulet ◽  
T. Bergot ◽  
L. Gomes ◽  
O. Thouron ◽  
...  

Abstract. This paper assesses the impact of aerosol properties on the formation and the development of radiation fog. Simulations were performed using the Meso-NH meteorological model including the ORILAM aerosol scheme coupled with a two-moment microphysical cloud scheme (number concentration of cloud droplets and cloud water content). The activation scheme used was taken from the work of Abdul-Razzak and Ghan (2004). "Off-line" sensitivity analysis of CCN (Cloud Condensation Nuclei) activation was performed on number, median diameter and chemical compounds of aerosols. During this "off-line" study, the interactions with the other physical processes (e.g. radiative) were not taken into account since the cooling rate was imposed. Different regimes of CCN activation and a critical value of aerosol number concentration were found. This critical aerosol number corresponds to the maximum of activated cloud droplets for a given cooling rate and given aerosol chemical properties. As long as the aerosol number concentration is below this critical value, the cloud droplet number increases when the aerosol number increases. But when the aerosol number concentration exceeds this critical value, the cloud droplet number decreases when aerosol number increases. A sensitivity study on aerosol chemical composition showed that the CCN activation was limited in the case of hydrophilic aerosol composed of material with a solubility in the 10% range. An event observed during the ParisFOG field experiment was simulated. This case took place in the polluted sub-urban area of Paris (France) characterized by particle concentrations of 17 000 aerosols per cm3. 1D simulations successfully reproduced the observed temporal evolution of the fog layer. Beyond the initial fog formation at the surface, cloud droplet formation occurred at the top of the fog layer where the cooling rate was maximum, reaching more than −10 K h−1. These simulations confirm that the aerosol particle number concentration is a key parameter for the accurate prediction of the microphysical properties of a fog layer and also influences the vertical development of fog. The important of the interaction between microphysical and radiative processes is illustrated, showing how the life cycle of a fog layer is determined by the CCN number concentration and chemical properties.


2008 ◽  
Vol 8 (4) ◽  
pp. 14105-14143
Author(s):  
H. Lihavainen ◽  
V.-M. Kerminen ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
J. Laakia ◽  
...  

Abstract. Physical and chemical properties of boundary layer clouds, together with relevant aerosol properties, were investigated during the first Pallas Cloud Experiment (First PaCE) conducted in northern Finland between 20 October and 9 November, 2004. Two stations located 6 km apart from each other at different altitudes were employed in measurements. The low-altitude station was always below the cloud layer, whereas the high-altitude station was inside clouds about 75% of the time during the campaign. Direct measurements of cloud droplet populations showed that our earlier approach of determining cloud droplet residual particle size distributions and corresponding activated fractions using continuous aerosol number size distribution measurements at the two stations is valid, as long as the cloud events are carefully screened to exclude precipitating clouds and to make sure the same air mass has been measured at both stations. We observed that a non-negligible fraction of cloud droplets originated from Aitken mode particles even at moderately-polluted air masses. We found clear evidence on first indirect aerosol effect on clouds but demonstrated also that no simple relation between the cloud droplet number concentration and aerosol particle number concentration exists for this type of clouds. The chemical composition of aerosol particles was dominated by organic matter (POM) and sulphate in continental air masses and POM, sodium and chlorine in marine air masses. The inorganic composition of cloud water behaved similarly to that of the aerosol phase and was not influenced by inorganic trace gases.


2010 ◽  
Vol 10 (20) ◽  
pp. 9851-9861 ◽  
Author(s):  
X. Ma ◽  
K. von Salzen ◽  
J. Cole

Abstract. Satellite-based cloud top effective radius retrieved by the CERES Science Team were combined with simulated aerosol concentrations from CCCma CanAM4 to examine relationships between aerosol and cloud that underlie the first aerosol indirect (cloud albedo) effect. Evidence of a strong negative relationship between sulphate, and organic aerosols, with cloud top effective radius was found for low clouds, indicating both aerosol types are contributing to the first indirect effect on a global scale. Furthermore, effects of aerosol on the cloud droplet effective radius are more pronounced for larger cloud liquid water paths. While CanAM4 broadly reproduces the observed relationship between sulphate aerosols and cloud droplets, it does not reproduce the dependency of cloud top droplet size on organic aerosol concentrations nor the dependency on cloud liquid water path. Simulations with a modified version of the model yield a more realistic dependency of cloud droplets on organic carbon. The robustness of the methods used in the study are investigated by repeating the analysis using aerosol simulated by the GOCART model and cloud top effective radii derived from the MODIS Science Team.


2016 ◽  
Author(s):  
Zhaolian Ye ◽  
Jiashu Liu ◽  
Aijun Gu ◽  
Feifei Feng ◽  
Yuhai Liu ◽  
...  

Abstract. Knowledge on aerosol chemistry in densely populated regions is critical for reduction of air pollution, while such studies haven't been conducted in Changzhou, an important manufacturing base and polluted city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particular matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in Changzhou city. A suite of analytical techniques were employed to characterize organic carbon / elemental carbon (OC / EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosols (WSOA). The average PM2.5 concentrations were found to be 108.3 μg m−3, and all identified species were able to reconstruct ~ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (~ 52.1 %), with SO42−, NO3− and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating influences from traffic emissions. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondarily formed and primarily emitted OA. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to 6.0 % of PM2.5 during winter. PAHs concentrations were also high in winter (140.25 ng m−3), which were predominated by median/high molecular weight PAHs with 5- and 6-rings. The organic matter including both water-soluble and water-insoluble species occupied ~ 20 % PM2.5 mass. SP-AMS determined that the WSOA had an average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C) and organic matter-to-organic carbon (OM / OC) ratios of 0.36, 1.54, 0.11, and 1.74, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized OA) and two primary OA (POA) factors (a nitrogen enriched hydrocarbon-like traffic OA and a cooking-related OA). On average, the POA contribution overweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions to the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.


2007 ◽  
Vol 7 (3) ◽  
pp. 6077-6112
Author(s):  
T. Anttila ◽  
V.-M. Kerminen

Abstract. Aitken mode particles are potentially an important source of cloud droplets in continental background areas. In order to find out which physico-chemical properties of Aitken mode particles are most important regarding their cloud-nucleating ability, we applied a global sensitivity method to an adiabatic air parcel model simulating the number of cloud droplets formed on Aitken mode particles, CD2. The technique propagates uncertainties in the parameters describing the properties of Aitken mode to CD2. The results show that if the Aitken mode particles do not contain molecules that are able to reduce the particle surface tension more than 30% and/or decrease the mass accommodation coefficient of water, α, below 10−2, the chemical composition and modal properties may have roughly an equal importance at low updraft velocities characterized by maximum supersaturations <0.1%. For larger updraft velocities, however, the particle size distribution is clearly more important than the chemical composition. In general, CD2 exhibits largest sensitivity to the particle number concentration, followed by the particle size. Also the shape of the particle mode, characterized by the geometric standard deviation (GSD), can be as important as the mode mean size at low updraft velocities. Finally, the performed sensitivity analysis revealed also that the chemistry may dominate the total sensitivity of CD2 to the considered parameters if: 1) the value of α varies at least one order of magnitude more than what is expected for pure water surfaces (10−2–1), or 2) the particle surface tension varies more than roughly 30% under conditions close to reaching supersaturation.


2013 ◽  
Vol 13 (2) ◽  
pp. 5477-5507
Author(s):  
J. Tonttila ◽  
P. Räisänen ◽  
H. Järvinen

Abstract. A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC) is presented for GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid-cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. This provides a consistent way for simulating the cloud radiative effects with two-moment cloud microphysical properties defined in subgrid-scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. This promotes changes in the global distribution of the cloud radiative effects and might thus have implications on model estimation of the indirect radiative effect of aerosols.


2009 ◽  
Vol 23 (28n29) ◽  
pp. 5434-5443 ◽  
Author(s):  
ANTONIO CELANI ◽  
ANDREA MAZZINO ◽  
MARCO TIZZI

A new model to study the effect of turbulence on the cloud droplets in the condensation phase is proposed and its behavior investigated by direct numerical simulations. The model is a generalization of the one by Celani, Mazzino, Tizzi, New J. Phys.10, 075021 (2008), where the droplet feedback on vapor is now explicitly taken into account. Physically, it amounts to considering the fact that when a cloud droplet increases its size, vapor is subtracted from the ambient with the net result of a local reduction in the supersaturation field. It is shown how this effect plays to reduce the broadening of droplet size spectra in the condensation stage and thus to produce results in closer agreement with observations.


1993 ◽  
Vol 39 (132) ◽  
pp. 239-244
Author(s):  
Jost Heintzenberg ◽  
Markku Rummukainen

AbstractIn a pilot experiment, airborne particles were shown to exist in snow. In newly deposited snow they could be traced down to 17 cm below the surface. With our particle sensor, the snow was ventilated on the level of expected natural ventilation velocities. We show with a simple deposition model that air/snow exchange of airborne particles must be considered in the interpretation of impurities in snow and glacier ice. However, the relative magnitude of ventilation velocity compared to dry-deposition velocities at the surface is of crucial importance for determining total deposition. In particular, in ice sheets with high ventilation velocities, seasonal variations in atmospheric concentrations can be dampened and age distributions of deposited particles need to be considered similarly to the occlusion of gases.


Soil Research ◽  
2004 ◽  
Vol 42 (1) ◽  
pp. 69 ◽  
Author(s):  
M. J. Donn ◽  
N. W. Menzies ◽  
V. Rasiah

The chemical properties of deep profile samples (up to 12 m) of Ferrosols from northern Queensland were investigated to provide an understanding of the accumulation of nitrate (NO3) within these soil profiles. The influence of other cations and anions present in the soil solution or on the exchange and the charge chemistry of the profiles were examined with respect to the NO3 accumulations. The major ions in the soil solution were Na, NO3, and chloride (Cl). Distinct regions of anion accumulation were observed; SO4 accumulated in the upper profile of all cores, whereas NO3 and Cl accumulations were restricted to the lower profile of cores with appreciable AEC (>1�cmolc/kg). Gaines-Thomas selectivity coefficients were used to indicate exchange preference for cations and anions, and are as follows: Al > Ca ~ Mg > K > Na and sulfate (SO4) > Cl ~ NO3. The selectivity of SO4 increased and the extractable SO4 decreased in the lower profile of all cores. This has important implications for the adsorption of NO3 and Cl. The NO3 and Cl accumulations were shown to correspond to a region of low SO4 occupancy of the exchange sites in the lower profile. Along with the high SO4 selectivity, this suggests that SO4 may control the positioning of the NO3 accumulations. It was concluded that the NO3 accumulations were relatively stable under current management practices, although the reduction in NO3 inputs would likely see the gradual replacement of NO3 with Cl as a result of their comparable selectivity for exchange sites.


Sign in / Sign up

Export Citation Format

Share Document