The effect of ecological disturbance on competition between Crinipellis perniciosa and other tropical fungi

Author(s):  
Elizabeth Bravo-Velasquez ◽  
John Hedger

SynopsisIsolates of the tropical fungus Crinipellis perniciosa obtained from cocoa and lianas in Ecuador were grown on media ranging from −0.45 MPa to −9.0 MPa water potential and their responses compared to those of other agarics and Xylaria species isolated from cocoa. Antagonism between mycelia of C. perniciosa and these isolates was also assessed over the same range of water potentials. It is hypothesised that C. perniciosa and other canopy inhabiting fungi of tropical forests are adapted to water stress, but are not competitive with fungi which colonise later, following litterfall, from lower litter and soil horizons, where water availability is higher. Xylaria spp. proved to be aggressive antagonists of C. perniciosa over a range of water potentials.

AoB Plants ◽  
2019 ◽  
Vol 11 (6) ◽  
Author(s):  
Corrine Duncan ◽  
Nick L Schultz ◽  
Megan K Good ◽  
Wolfgang Lewandrowski ◽  
Simon Cook

Abstract Water availability is a critical driver of population dynamics in arid zones, and plant recruitment is typically episodic in response to rainfall. Understanding species’ germination thresholds is key for conservation and restoration initiatives. Thus, we investigated the role of water availability in the germination traits of keystone species in an arid ecosystem with stochastic rainfall. We measured seed germination responses of five arid species, along gradients of temperature and water potential under controlled laboratory conditions. We then identified the cardinal temperatures and base water potentials for seed germination, and applied the hydrotime model to assess germination responses to water stress. Optimum temperatures for germination ranged from 15 to 31 °C under saturated conditions (0 MPa), and three species had low minimum temperatures for germination (<3 °C). A small proportion of seeds of all species germinated under dry conditions (Ψ ≤ −1 MPa), although base water potential for germination (Ψ b50) ranged from −0.61 to −0.79 MPa. Species adhered to one of two germination traits: (i) the risk-takers which require less moisture availability for germination, and which can germinate over a wider range of temperatures irrespective of water availability (Casuarina pauper and Maireana pyramidata), and (ii) the risk-avoiders which have greater moisture requirements, a preference for cold climate germination, and narrower temperature ranges for germination when water availability is low (Atriplex rhagodioides, Maireana sedifolia and Hakea leucoptera). High seed longevity under physiological stress in H. leucoptera, combined with a risk-avoiding strategy, allows bet-hedging. The hydrotime model predicted lower base water potentials for germination than observed by the data, further supporting our assertion that these species have particular adaptations to avoid germination during drought. This study provides insights into the complex physiological responses of seeds to environmental stress, and relates seed germination traits to community dynamics and restoration in arid zones.


OENO One ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 269 ◽  
Author(s):  
Edoardo Antonio Costantino Costantini ◽  
Alessandro Agnelli ◽  
Pierluigi Bucelli ◽  
Aldo Ciambotti ◽  
Valentina Dell’Oro ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To evaluate the relationship between carbon isotope ratio (δ<sup>13</sup>C) and wine grape viticultural and oenological performance in organic farming.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The study was carried out for four years in the Chianti Classico wine production district (Central Italy), on five non irrigated vineyards conducted in organic farming. The reference variety was Sangiovese. Eleven sites were chosen for vine monitoring and grape sampling. The performance parameters were alcohol and must sugar content, sugar accumulation rate, mean berry weight, and extractable polyphenols. δ<sup>13</sup>C, stem water potential, and soil water availability were also monitored. Finally, soil nitrogen as well as yeast available nitrogen in the must were measured. δ<sup>13</sup>C was directly related to stem water potential and soil water deficit, and indicated a range of water stress conditions from none and moderate to strong. However, its relationship with viticultural and oenological results was contrary to expectation, that is, performance linearly increased along with soil moisture. On the other hand, the worst performance was obtained where both water and nitrogen were more limiting.</p><p style="text-align: justify;"><strong>Conclusions</strong>: The unexpected relationship between δ<sup>13</sup>C and Sangiovese performance was caused by low nitrogen availability. The studied sites all had low-fertility soils with poor or very poor nitrogen content. Therefore, in the plots where soil humidity was relatively higher, nitrogen plant uptake was favoured, and Sangiovese performance improved. Macronutrient being the main limiting factor, the performance was not lower in the plots where soil water availability was relatively larger. Therefore, the best viticultural result was obtained with no water stress conditions, at low rather than at intermediate δ<sup>13</sup>C values.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Water nutrition is crucial for wine grape performance. δ<sup>13</sup>C is a method used to assess vine water status during the growing season and to estimate vine performance. A good performance is expected at moderate stress and intermediate δ<sup>13</sup>C values. A better knowledge of the interaction between water and nutrient scarcity is needed, as it can affect the use of δ<sup>13</sup>C to predict vine performance.</p>


1969 ◽  
Vol 47 (11) ◽  
pp. 1761-1764 ◽  
Author(s):  
Merrill R. Kaufmann

The effect of nearly constant water potential on germination of citrus, sunflower, and lettuce seeds was studied. Water potential equilibration was achieved by placing soil above a cellulose acetate membrane which was in contact with a solution of polyethylene glycol-6000. Selection of solute potentials in the solution resulted in controlled water potentials in the soil over a range of 0 to −14.9 bars for citrus and 0 to −8.0 bars for sunflower and lettuce. The water stress experienced by germinating seeds in this system is largely the result of a matric effect rather than a solute effect.Citrus seeds germinated at water potentials as low as −4.7 bars and lettuce at −4.1 bars, but sunflower germinated at −8.0 bars. Sunflower germinated as rapidly at −4.1 bars as lettuce at −2.3 bars, both reaching 50% germination at about 8 days. Citrus germinated much more slowly, requiring 26 days at 0 bars.


1989 ◽  
Vol 16 (6) ◽  
pp. 549 ◽  
Author(s):  
SL Steinberg ◽  
MJ Mcfarland ◽  
JC Miller

A gradation, that reflects the maturity of the leaves, exists in the leaf water, osmotic and turgor potential and stomatal conductance of leaves along current and 1-year-old branches of peach. Predawn leaf water potentials of immature folded leaves were approximately 0.24 MPa lower than mature leaves under both well-watered and dry conditions. During the daytime the leaf water potential of immature leaves reflected the water potential produced by water flux for transpiration. In well- watered trees, mature and immature unfolded leaves had a solute potential at least 0.5 MPa lower than immature folded leaves, resulting in a turgor potential that was approximately 0.8 MPa higher. The turgor requirement for growth appeared to be much less than that maintained in mature leaves. As water stress developed and leaf water potentials decreased, the osmotic potential of immature folded leaves declined to the level found in mature leaves, thus maintaining turgor. In contrast, mature leaves showed little evidence of turgor maintenance. Stomatal conductance was lower in immature leaves than in fully mature leaves. With the onset of water stress, conductance of mature leaves declined to a level near that of immature leaves. Loss of turgor in mature leaves may be a major factor in early stomatal closure. It was concluded that osmotic adjustment played a role in maintenance of a leaf water status favorable for some growth in water-stressed immature peach leaves.


2021 ◽  
Vol 25 (3) ◽  
pp. 1411-1423 ◽  
Author(s):  
Xiangyu Luan ◽  
Giulia Vico

Abstract. Crop yield is reduced by heat and water stress and even more when these conditions co-occur. Yet, compound effects of air temperature and water availability on crop heat stress are poorly quantified. Existing crop models, by relying at least partially on empirical functions, cannot account for the feedbacks of plant traits and response to heat and water stress on canopy temperature. We developed a fully mechanistic model, coupling crop energy and water balances, to determine canopy temperature as a function of plant traits, stochastic environmental conditions, and irrigation applications. While general, the model was parameterized for wheat. Canopy temperature largely followed air temperature under well-watered conditions. But, when soil water potential was more negative than −0.14 MPa, further reductions in soil water availability led to a rapid rise in canopy temperature – up to 10 ∘C warmer than air at soil water potential of −0.62 MPa. More intermittent precipitation led to higher canopy temperatures and longer periods of potentially damaging crop canopy temperatures. Irrigation applications aimed at keeping crops under well-watered conditions could reduce canopy temperature but in most cases were unable to maintain it below the threshold temperature for potential heat damage; the benefits of irrigation in terms of reduction of canopy temperature decreased as average air temperature increased. Hence, irrigation is only a partial solution to adapt to warmer and drier climates.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 75
Author(s):  
Michele Faralli ◽  
Pier Lugi Bianchedi ◽  
Massimo Bertamini ◽  
Claudio Varotto

Understanding the physiological basis underlying the water stress responses in grapevine is becoming increasingly topical owing to the challenges that climate change will impose to grapevine agriculture. Here we used cv. Pinot gris (clone H1), grafted on a series of tolerant (1103Paulsen; P), sensitive (SO4) and recently selected (Georgikon28; G28, Georgikon121; G121, Zamor17; Z17) rootstocks. Plants were either subjected to reduced water availability (WS) or maintained at pot capacity (WW). Photosynthetic (light response curves), stomatal and in vivo gas exchange analysis were carried out as well as dynamics of daily water use (WU), leaf area accumulation with affordable RGB imaging pipelines and leaf water potential. Significant genotypic variation was recorded between rootstocks for most of the traits analyzed under optimal conditions with P and SO4 showing a more vigorous growth, higher CO2 assimilation rate, stomatal conductance and stomatal density per unit of leaf area than G28, G121, Z17 (p < 0.001). Under WS, rootstocks induced different water stress response in Pinot gris, with G28 and G121 showing a higher sensitivity of water use to reduced water availability (WS) (p = 0.021) and no variation for midday leaf water potential until severe WS. P, Z17 and to some extent SO4 induced a pronounced near-anisohydric response with a general WU maintenance followed by reduction in leaf water potential even at high levels of soil water content. In addition, G28 and G121 showed a less marked slope in the linear relationship between daily water use and VPD (p = 0.008) suggesting elevated sensitivity of transpiration to evaporative demand. This led to an insensitivity for total dry weight biomass of G28 and G121 under WS conditions (p < 0.001). This work provides: (i) an in-depth analysis for a series of preferable traits under WS in Pinot gris; (ii) a characterization of Pinot gris × rootstock interaction and a series of desirable traits under WS induced by several rootstocks; (iii) the potential benefit for the use a series of affordable methods (e.g., RGB imaging) to easily detect dynamic changes in biomass in grapevine and quickly phenotype genotypes with superior responses under WS. In conclusion, the near-isohydric and conservative behavior observed for G28 and G121 coupled with their low vigor suggest them as potential Pinot gris rootstock candidates for sustaining grapevine productivity in shallow soils likely to develop terminal stress conditions.


2020 ◽  
Author(s):  
Xiangyu Luan ◽  
Giulia Vico

Abstract. Crop yield is reduced by heat and water stress, and even more when they co-occur. Yet, compound effects of air temperature and water availability on crop heat stress are poorly quantified: crop models, by relying at least partially on empirical functions, cannot account for the feedbacks of plant traits and response to heat and water stress on canopy temperature. We developed a fully mechanistic model coupling crop energy and water balances, to determine canopy temperature as a function of plant traits, stochastic environmental conditions and their variability; and irrigation applications. While general, the model was parameterized for wheat. Canopy temperature largely followed air temperature under well-watered conditions; but when soil water potential was more negative than −0.14 MPa, further reductions in soil water availability led to a rapid rise in canopy temperature – up to 10 °C warmer than air at soil water potential of −0.62 MPa. More intermittent precipitation led to higher canopy temperatures and longer periods of potentially damaging crop canopy temperatures. Irrigation applications aimed at keeping crops under well-watered conditions could reduce canopy temperature, but in most cases were unable to maintain it below the threshold temperature for potential heat damage; the benefits of irrigation became smaller as average air temperature increased. Hence, irrigation is only a partial solution to adapt to warmer and drier climates.


1999 ◽  
Vol 124 (2) ◽  
pp. 189-193 ◽  
Author(s):  
A. Naor ◽  
I. Klein ◽  
H. Hupert ◽  
Y. Grinblat ◽  
M. Peres ◽  
...  

The interactions between irrigation and crop level with respect to fruit size distribution and soil and stem water potentials were investigated in a nectarine (Prunus persica (L.) Batsch. `Fairlane') orchard located in a semiarid zone. Irrigation treatments during stage III of fruit growth ranged from 0.62 to 1.29 of potential evapotranspiration (ETp). Fruit were hand thinned to a wide range of fruit levels (200 to 1200 fruit/tree in the 555-tree/ha orchard). Total yield did not increase with increasing irrigation rate above 0.92 ETp in 1996 and maximum yield was found at 1.06 ETp in 1997. Fruit size distribution was shifted towards larger fruit with increasing irrigation level and with decreasing crop level. The two highest irrigation treatments had similar midday stem water potentials. Our findings indicate that highest yields and highest water use efficiency (yield/water consumption) are not always related to minimum water stress. Total yield and large fruit yield were highly and better correlated with midday stem water potential than with soil water potential. This confirms other reports that midday stem water potential is an accurate indicator of tree water stress and may have utility in irrigation scheduling.


1972 ◽  
Vol 52 (4) ◽  
pp. 619-623 ◽  
Author(s):  
M. C. PAWLOSKI ◽  
C. F. SHAYKEWICH

Germination rate of wheat was determined at several water potentials (−0.8, −5.3, −7.8, and −15.3 bars) on two soils and a semipermeable membrane. Germination rate decreased as matric potential decreased. At a given water potential, germination rates were the same for both soils but germination on the membrane system was faster than on soils. Hydraulic conductivity was different on the two media, indicating that the hydraulic conductivity is an important component of soil water stress. Germination rate was not affected by decreasing water potential to −7.8 bars on each medium. At the −15.3-bar potential germination rate was considerably slower.


1988 ◽  
Vol 68 (3) ◽  
pp. 569-576 ◽  
Author(s):  
YADVINDER SINGH ◽  
E. G. BEAUCHAMP

Two laboratory incubation experiments were conducted to determine the effect of initial soil water potential on the transformation of urea in large granules to nitrite and nitrate. In the first experiment two soils varying in initial soil water potentials (− 70 and − 140 kPa) were incubated with 2 g urea granules with and without a nitrification inhibitor (dicyandiamide) at 15 °C for 35 d. Only a trace of [Formula: see text] accumulated in a Brookston clay (pH 6.0) during the transformation of urea in 2 g granules. Accumulation of [Formula: see text] was also small (4–6 μg N g−1) in Conestogo silt loam (pH 7.6). Incorporation of dicyandiamide (DCD) into the urea granule at 50 g kg−1 urea significantly reduced the accumulation of [Formula: see text] in this soil. The relative rate of nitrification in the absence of DCD at −140 kPa water potential was 63.5% of that at −70 kPa (average of two soils). DCD reduced the nitrification of urea in 2 g granules by 85% during the 35-d period. In the second experiment a uniform layer of 2 g urea was placed in the center of 20-cm-long cores of Conestogo silt loam with three initial water potentials (−35, −60 and −120 kPa) and the soil was incubated at 15 °C for 45 d. The rate of urea hydrolysis was lowest at −120 kPa and greatest at −35 kPa. Soil pH in the vicinity of the urea layer increased from 7.6 to 9.1 and [Formula: see text] concentration was greater than 3000 μg g−1 soil. There were no significant differences in pH or [Formula: see text] concentration with the three soil water potential treatments at the 10th day of the incubation period. But, in the latter part of the incubation period, pH and [Formula: see text] concentration decreased with increasing soil water potential due to a higher rate of nitrification. Diffusion of various N species including [Formula: see text] was probably greater with the highest water potential treatment. Only small quantities of [Formula: see text] accumulated during nitrification of urea – N. Nitrification of urea increased with increasing water potential. After 35 d of incubation, 19.3, 15.4 and 8.9% of the applied urea had apparently nitrified at −35, −60 and −120 kPa, respectively. Nitrifier activity was completely inhibited in the 0- to 2-cm zone near the urea layer for 35 days. Nitrifier activity increased from an initial level of 8.5 to 73 μg [Formula: see text] in the 3- to 7-cm zone over the 35-d period. Nitrifier activity also increased with increasing soil water potential. Key words: Urea transformation, nitrification, water potential, large granules, nitrifier activity, [Formula: see text] production


Sign in / Sign up

Export Citation Format

Share Document