The use of genetically Lactobacillus plantarum in the ensilage process.

Author(s):  
H.J. Gilbert ◽  
J.E. Rixon ◽  
R.S. Sharp ◽  
A.G. O'Donnell ◽  
G.P. Hazlewood

Silage inoculants consisting of primarily Lactobacillus plantarum, are widely used to ensure that lactic acid bacteria dominate the fermentation of water soluble carbohydrates (WSC) during the ensilage process. Previous studies have shown that the supplementation of ensiled forage crops with cellulases can also improve the quality of silage through i) increasing the generation of WSC, and therefore ensuring an adequate supply of substrate for L. plantanim; ii) Partial hydrolysis of the plant cell wall increasing the rate of cellulose hydrolysis within the rumen. From the above discussion it is apparent that the use of an L.plantarum strain, with the capacity to hydrolyse cellulose, could be beneficial in the ensiling process. No celluloytic lactic bacterium has been isolated from microbial ecosystems. However, the advent of recombinant DNA technology affords us the possibility of engineering a cellulolytic derivative of L. plantarum. This report describes progress towards this objective.

1995 ◽  
Vol 75 (3) ◽  
pp. 425-432 ◽  
Author(s):  
T. A. McAllister ◽  
L. B. Selinger ◽  
L. R. McMahon ◽  
H. D. Bae ◽  
T. J. Lysyk ◽  
...  

The effect of ensiling barley treated with two bacterial inoculants containing mixtures of Lactobacillus plantarum and Enterococcus faecium (1.0 × 105 cfu g−1 as fed silage) on the nutritional value and aerobic stability of barley silage was examined. Inoculants differed in the strains they contained and were originally selected by Pioneer Hi-Bred International for use with corn or alfalfa silage, SILA-BAC® (1174), or with grass silage (X2637). Concentrations of water-soluble carbohydrates were higher (P < 0.05) in inoculated than in control silages. Although inoculants appeared to increase the numbers of lactic acid producing bacteria (LAB) at ensiling, post-ensiling numbers (cfu g−1) of yeasts and molds were lower (P < 0.05) in inoculated than in control silages. Lactic acid concentrations and pH were similar among the silages and variations m the growth of yeast and mold populations could not be explained by differences in the production of volatile fatty acids (VFA) among silages. Inoculation of barley silage with either inoculant increased (P < 0.01) the average daily gain of lambs. A digestibility experiment with 12 growing ram lambs showed that inoculants did not alter (P > 0.05) DM intake, feed efficiency or the digestion of DM, organic matter, acid detergent fiber (ADF) and neutral detergent fiber (NDF). Nitrogen intake and retention were greater (P < 0.05) in lambs fed silage inoculated with 1174 as compared with control silage. Yeast populations were increased (P < 0.05) in control and 1174 after 2 d of exposure to air but it required 13 d for a similar yeast population to be established in X2637 silage. Increases in the mold populations within the silages were noted after 2, 5 and 13 d of exposure to air for control, 1174 and X2637, respectively. The temperature of control silage increased (P < 0.05) 2 d after exposure to air, whereas increases in temperature were delayed for 4 d in 1174 and 8 d in X2637. Temperatures rose as high as 30 °C in control silage, but did not exceed 24 °C in inoculated silages during the 13 d period. Key words: Barley silage, inoculant, digestion, aerobic stability, sheep, gain


Author(s):  
J. A. Gallagher ◽  
J. M. M. Adams ◽  
L. B. Turner ◽  
M. E. Kirby ◽  
T. A. Toop ◽  
...  

Abstract Red algae, belonging to the phylum Rhodophyta, contain an abundance of useful chemicals including bioactive molecules and present opportunities for the production of different products through biorefinery cascades. The rhodophyte Palmaria palmata, commonly termed dulse or dillisk, grows predominantly on the northern coasts of the Atlantic and Pacific Oceans and is a well-known snack food. Due to its abundance, availability and cultivation capacity, P. palmata was selected for study as a potential candidate for a biorefinery process. In addition to studying juice and solid fractions of freshly harvested P. palmata, we have investigated the novel possibility of preserving algal biomass by ensilaging protocols similar to those employed for terrestrial forage crops. In the metabolite partitioning within the solid and liquid fractions following screw-pressing, the majority of the metabolites screened for—water soluble carbohydrates, proteins and amino acids, lipids, pigments, phenolics and antioxidant activity—remained in the solid fraction, though at differing proportions depending on the metabolite, from 70.8% soluble amino acids to 98.2% chlorophyll a and 98.1% total carotenoids. For the ensiling study, screw-pressed P. palmata, with comparative wilted and chopped, and chopped only samples, were ensiled at scale with and without Safesil silage additive. All samples were successfully ensiled after 90 days, with screw-pressing giving lower or equal pH before and after ensiling compared with the other preparations. Of particular note was the effluent volumes generated during ensiling: 26–49% of the fresh weight, containing 16–34% of the silage dry matter. This may be of advantage depending on the final use of the biomass.


2022 ◽  
Vol 12 ◽  
Author(s):  
Fengyuan Yang ◽  
Yanping Wang ◽  
Shanshan Zhao ◽  
Changsong Feng ◽  
Xiaomiao Fan

The aim of this study was to investigate effects of wilting and Lactobacillus plantarum inoculation on the dynamics of the fermentation products, residual non-structural carbohydrates, and bacterial communities in alfalfa silage. Fresh and wilted alfalfa were ensiled with and without L. plantarum for 10, 30, 60, and 90 days. A high-throughput sequencing method for absolute quantification of 16S rRNA was adopted to determine the bacterial community composition at different ensiling periods. For the wilted silage, the bacterial community, pH value, and ammonia nitrogen concentration remained stable in the silage at 30 days. L. plantarum inoculation accelerated lactic acid fermentation and altered the predominant genus in the wilted silage as compared with the non-inoculated group. For the non-wilted group, fast consumption of water-soluble carbohydrates (WSCs) was observed at 10 days in the non-inoculated silage along with rapid growth of undesirable Hafnia. L. plantarum inoculation inhibited growth of Hafnia at 10 days in the non-wilted silage. Clostridia fermentation occurred in the non-wilted silage at 90 days, as indicated by an increased pH, formation of butyric acid (BA), and apparent abundance of genera belonging to Clostridia. L. plantarum inoculation inhibited BA accumulation and growth of Garciella in the non-wilted silage at 90 days as compared with the non-wilted silage without inoculation, but had little effect on the growth of Clostridium sensu stricto. Overall, the high moisture content of the non-wilted alfalfa silage led to rapid consumption of WSCs and growth of harmful microorganisms at the early stage of ensiling, resulting in poor fermentation quality. Wilting and L. plantarum inoculation both improved fermentation quality and inhibited the growth of spoilage microorganisms in alfalfa silage, while L. plantarum inoculation alone failed to achieve optimum fermentation quality of non-wilted alfalfa silage.


2011 ◽  
Vol 64 ◽  
pp. 286-286
Author(s):  
J. Swaminathan ◽  
C.R. Bunt ◽  
B. Gilmore ◽  
D. Jones

The quality of silage can be improved by addition of lactic acid bacteria (LAB) at the time of ensiling Rapid fermentation by fermentative LAB reduces water soluble carbohydrates to lactic acid The consequent rapid decrease in pH improves silage preservation and inhibits the growth of aerobic spoilage microorganisms For successful silage making it is essential that inoculants are delivered in a viable state and are released during silage making LAB can be formulated as prills for extended bacterial survival but the release characteristics from the prill will determine product utility In these experiments release characteristics of the LAB Lactobacillus plantarum contained in three types of prills (immediate release formulation (IRF) or sustained release formulations (SRF1 and SRF2)) were examined using a DIS 8000 Dissolution Apparatus to study in vitro release in two pH conditions At neutral pH IRF released >80 of live bacterial within 30 min while SRF1 and SRF2 released approximately 55 and 25 respectively Under acidic conditions (pH 4) release profiles were similar to those produced under neutral conditions from all formulations This study demonstrates the utility of dissolution analysis in selection of bacterial formulations


Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 24
Author(s):  
Zhi-Yuan Ma ◽  
Emilio Ungerfeld ◽  
Zhu Ouyang ◽  
Xiao-Ling Zhou ◽  
Xue-Feng Han ◽  
...  

Sweet corn is a feed resource with a high content of water-soluble carbohydrates (WSC) available for ruminant production. This study was conducted to investigate the effect of inoculation with Lactobacillus plantarum on fermentation and nutritional quality of sweet corn silage. Sweet corn whole plant (WP) and sweet corn stover (CS) were ensiled in mini silos with or without inoculation of L. plantarum. Proximate composition and fermentation variables, and composition of the bacterial community, were evaluated before ensiling and at the end of the first, second, and third month after ensiling. There was fiber degradation in CS silage after three months of ensilage, but not in WP silage. Inoculation of WP silage, but not of CS silage, with L. plantarum, increased starch content. The relative abundance of genus Lactobacillus was increased by inoculation with L. plantarum by 14.2% and 82.2% in WP and CS silage, respectively. Inoculation with L. plantarum was not necessary to achieve adequate fermentation of either WP or CS silage, as the abundance of native lactic acid bacteria in both materials seemed suitable for adequate fermentation. That said, increased starch content in WP resulting from inoculation with L. plantarum can increase the nutritive value of WP for ruminants.


2020 ◽  
Vol 33 (8) ◽  
pp. 1292-1300
Author(s):  
Zhihao Dong ◽  
Siran Wang ◽  
Jie Zhao ◽  
Junfeng Li ◽  
Tao Shao

Objective: To explore feed resources capable of replacing regular poor-quality fodder, this study was conducted to evaluate the effects of additives on the fermentation quality, <i>in vitro</i> digestibility and aerobic stability of mulberry leaves silage.Methods: The mulberry leaves were ensiled either untreated (control) or treated with 1×10<sup>6</sup> cfu/g fresh matter <i>Lactobacillus plantarum</i> (L), 1% glucose (G), 3% molasses (M), a combination of 1% glucose and <i>Lactobacillus plantarum</i> (L+G), and a combination of 3% molasses and <i>Lactobacillus plantarum</i> (L+M). The fermentation quality and chemical composition were analyzed after 7, 14, 30, and 60 d, respectively. The 60-d silages were subjected to an aerobic stability test and fermented with buffered rumen fluid to measure the digestibility.Results: Inoculating lactic acid bacteria (LAB) resulted in more rapid increase in lactic acid concentrations and decline in pH of mulberry leaves silage as compared control. Higher acetic acid and lower ethanol and ammonia nitrogen concentrations (p<0.05) were observed in the LAB-inoculated silages as opposed to control during ensiling. The LAB-inoculated silages contained lower water-soluble carbohydrates compared with control during the first 14 d of ensiling, and lower neutral detergent fibre (p<0.05) concentrations as compared with non-LAB inoculated silages. Adding molasses alone increased (p<0.05) the digestibility of dry matter (DM). The aerobic stability of mulberry leaves silage was increased by LAB inoculation, whereas decreased by adding glucose or molasses.Conclusion: The LAB inoculation improved fermentation quality and aerobic stability of mulberry leaves silage, while adding glucose or molasses failed to affect the fermentation and impaired the aerobic stability. Inoculating LAB alone is recommended for mulberry leaves especially when ensiled at a relatively high DM.


Rangifer ◽  
2000 ◽  
Vol 20 (2-3) ◽  
pp. 17 ◽  
Author(s):  
Svein D. Mathiesen ◽  
Tove H. Aagnes Utsi

The chemical composition and digestibility of plants selected by Norwegian reindeer (Rangifer t. tarandus) on the sub-Antarctic island of South Georgia (SG) were investigated in the austral summer and compared with two qualities of standard grasses of Phleum pratense of European origin. Paridiochola flabellata, Poa pratense, Poa annua, Deschampsia antarctka, and Phleum alpinum collected on SG contained 14.8, 17.6, 22.8, 16.1 and 10.1% respectively of crude protein of dry matter (DM). Aceana magellanica also collected on SG contained 19.8% of crude protein and 18.8% of water-soluble carbohydrates (WSC) of DM, while the tussock grass P. flabellata, contained as much as 29-3% of WSC of DM. Total plant cell-wall contents (CWC), including cellulose, hemi-cellulose and lignin in P. flabellata, P. pratense, P. annua and P. alpinum were 53.2, 49.6, 41.7 and 40.4% of DM respectively, while A. magellanica contained only 17.5% of DM CWC. The lignin concentrations of plants analysed varied between 1.2 and 3.2% of DM. Mean in vitro dry matter digestibility (IVDMD) of selected plants ranged from 70% in P. flabellata to 83% in P. alpinum after 48 h incubation in rumen fluid from these reindeer. In contrast, the IVDMD of the poor and high quality standard grass Phleum pratense were 54% and 73% of DM, respectively. The forage eaten by reindeer on SG in summer was of high quality, with low lignin content, moderate protein concentration and high degradability in rumen fluid.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


Sign in / Sign up

Export Citation Format

Share Document