Review of Problems in Application of Supersonic Combustion

1964 ◽  
Vol 68 (645) ◽  
pp. 575-597 ◽  
Author(s):  
Antonio Ferri

SummaryThe problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.

1940 ◽  
Vol 44 (352) ◽  
pp. 322-337
Author(s):  
Lucio Lazzarino

RésuméIt is demonstrated how, with increase in speed, the diameter of optimum efficiency and the maximum possible value of efficiency of an airscrew diminish. The efficiency of a system of two counter-revolving airscrews with different angular velocities is then determined, and the variation of efficiency with variation in the relation between the angular velocities of the two airscrews.With increase in the height and speed of flight, airscrew performance inevitably falls off, frequently in a marked degree; this being mainly due to the decrease in aerodynamic efficiency of the blade sections at high Mach numbers.The object of the present article is to analyse the influence exerted upon the performance of an airscrew by the various parameters that determine it, wit-h special reference to those connected with the speed and height of flight.A similar study has also been made of systems constituted of two counter-rotating airscrews, with a view to comparing them with isolated airscrews designed to absorb the same power under identical conditions.By the methods here described, an approximate numerical evaluation of the performance can be made, utilising the experimental results which are already to hand.


1948 ◽  
Vol 52 (455) ◽  
pp. 723-734 ◽  
Author(s):  
D. J. Lyons

In the Realm of stability and control, we are at present travelling headlong into a region of new problems. Besides tidying up the outstanding items on the types of aircraft we are used to seeing flying about to-day, a not inconsiderable task when one considers the troubles we encounter when we undertake the design of a new so-called “conventional” aeroplane, we have to tackle two major lines of research and development. First, the peculiar problems associated with the stability and control of aircraft of large size, both military and civil, into which difficulties associated with high Mach numbers intrude themselves but little; and secondly, the even more extensive problems associated with the stability and control of aircraft, both large and small, which are to fly at very high Mach numbers, not only at their design cruising and diving speeds, but also in the extremely important slow speed conditions. Mr. M. B. Morgan of the R.A.E. has dealt with some aspects of the second series of problems, so I propose to concentrate on some of the problems involved in the first series, that is those primarily associated with the increase of aircraft size.


An experimental study has been made of the gaseous drag torque on an isolated sphere rotating at high Mach numbers. The sphere was suspended electromagnetically and spun by induction. The drag torque has been measured through the transition régime from continuum to free molecule flow at Mach numbers (based on equatorial speed) of up to about five. These high Mach numbers were achieved in heavy vapours (diiodomethane, germanium tetrabromide and stannic bromide) with sonic speed as little as a quarter of that in air. To measure the pressure in the vapour a second (smaller) rotating sphere was used as a pressure gauge. The results agree well with those previously obtained and show an unexpected Mach number dependence in the transition régime.


2007 ◽  
Vol 22 (3) ◽  
pp. 587-594 ◽  
Author(s):  
V. Bedekar ◽  
S.V. Chavan ◽  
A.K. Tyagi

Highly sinter-active powders of RE2O3 [rare earth (RE) = Gd, Eu, Dy] have been prepared using the corresponding metal nitrates as the oxidants, and glycine and citric acid as the fuels. Two different oxidant-to-fuel ratios, namely stoichiometric ratio and fuel-deficient ratio were used to explore the possibility of preparing different crystallographic modifications. By a careful control of oxidant-to-fuel ratio, nanocrystalline Eu2O3 and Gd2O3 could be prepared in cubic (C-type) as well as monoclinic (B-type) modifications. However, the high-temperature monoclinic modification could not be obtained for Dy2O3 due to a very high C-to-B-type phase transition temperature. The crystallite size, surface area, and sintering behavior were also studied for powders prepared using different oxidant-to-fuel ratios, and the results showed a remarkable correlation between different fuel contents and powder properties. Some of these powders resulted in pellets of nearly theoretical density. The sintered microstructure was studied by scanning electron microscopy.


2013 ◽  
Vol 8 (4) ◽  
pp. 64-75
Author(s):  
Sergey Gaponov ◽  
Natalya Terekhova

This work continues the research on modeling of passive methods of management of flow regimes in the boundary layers of compressed gas. Authors consider the influence of pressure gradient on the evolution of perturbations of different nature. For low Mach number M = 2 increase in pressure contributes to an earlier transition of laminar to turbulent flow, and, on the contrary, drop in the pressure leads to a prolongation of the transition to turbulence. For high Mach number M = 5.35 found that the acoustic disturbances exhibit a very high dependence on the sign and magnitude of the external gradient, with a favorable gradient of the critical Reynolds number becomes smaller than the vortex disturbances, and at worst – boundary layer is destabilized directly on the leading edge


1997 ◽  
Vol 36 (10) ◽  
pp. 109-115 ◽  
Author(s):  
Choon-Yee Hoh ◽  
Ralf Cord-Ruwisch

For modeling of biological processes that operate close to the dynamic equilibrium (eg. anaerobic processes), it is critical to prevent the prediction of positive reaction rates when the reaction has already reached dynamic equilibrium. Traditional Michaelis-Menten based models were found to violate the laws of thermodynamics as they predicted positive reaction rates for reactions that were endergonic due to high endproduct concentrations. The inclusion of empirical “product inhibition factors” as suggested by previous work could not prevent this problem. This paper compares the predictions of the Michaelis-Menten Model (with and without product inhibition factors) and the Equilibrium Based Model (which has a thermodynamic term introduced into its rate equation) with experimental results of reactions in anaerobic bacterial environments. In contrast to the Michaelis-Menten based models that used traditional inhibition factors, the Equilibrium Based Model correctly predicted the nature and the degree of inhibition due to endproduct accumulation. Moreover, this model also correctly predicted when reaction rates must be zero due to the free energy change of the conversion reaction being zero. With these added advantages, the Equilibrium Based Model thus seemed to provide a scientifically correct and more realistic basis for a variety of models that describe anaerobic biosystems.


2005 ◽  
Vol 20 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Ergisto Angeli ◽  
Agostino Tartari ◽  
Michele Frignani ◽  
Vincenzo Molinari ◽  
Domiziano Mostacci ◽  
...  

In recent years, research conducted in the US and in Italy has demonstrated production of radioisotopes in plasma focus devices, and particularly, on what could be termed "endogenous" production, to wit, production within the plasma it self, as opposed to irradiation of tar gets. This technique relies on the formation of localized small plasma zones characterized by very high densities and fairly high temperatures. The conditions prevailing in these zones lead to high nuclear reaction rates, as pointed out in previous work by several authors. Further investigation of the cross sections involved has proven necessary to model the phenomena involved. In this paper, the present status of research in this field is re viewed, both with regards to cross section models and to experimental production of radio isotopes. Possible out comes and further development are discussed.


Sign in / Sign up

Export Citation Format

Share Document