Diverse Signals Combinations for High-Sensitivity GNSS

2007 ◽  
Vol 60 (3) ◽  
pp. 497-515 ◽  
Author(s):  
Rigas T. Ioannides ◽  
L. Enrique Aguado ◽  
Gary Brodin

Indoor positioning imposes demanding requirements on the design of Global Navigation Satellite System (GNSS) sensors for both the acquisition and tracking functions. Although different combinations of coherent and non-coherent integration periods of a GNSS signal can be used to achieve reliable acquisition of the GNSS signals and indoors positioning, there are limitations to the extent that the integration period of the signal energy can be increased set by the receiver and satellite dynamics and the stability of the local oscillator. Assisting networks for GNSS applications (AGNSS) provide users with the capability of using long integration periods, enabling them to acquire indoor signals at low Carrier to Noise Ratio (CNR) values, where CNR is defined as the ratio of the received signal power over the noise density in units of dB-Hz. In this work we propose and evaluate the potential of a new method that will provide the user with an additional signal energy margin for accurate and reliable indoor positioning, with or without relying on assisted GNSS-type algorithms. The technique proposed here is based on the coherent and non-coherent combination of the energy of signals transmitted from the same GNSS satellite on different frequencies using the multiple open service signals that are to be provided by the Galileo system and under the GPS modernisation. This paper shows the improvement to the receiver acquisition and tracking performance using the proposed technique of combining energies at the L1, L2 and L5 bands for both data and pilot signals.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jin Wang ◽  
Qin Zhang ◽  
Guanwen Huang

AbstractThe Fractional Cycle Bias (FCB) product is crucial for the Ambiguity Resolution (AR) in Precise Point Positioning (PPP). Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane (WL) and Narrow Lane (NL) combinations, the uncombined PPP model is flexible and effective to generate the FCB products. This study presents the FCB estimation method based on the multi-Global Navigation Satellite System (GNSS) precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System (iGMAS) observations using the uncombined PPP model. The dual-frequency raw ambiguities are combined by the integer coefficients (4,− 3) and (1,− 1) to directly estimate the FCBs. The details of FCB estimation are described with the Global Positioning System (GPS), BeiDou-2 Navigation Satellite System (BDS-2) and Galileo Navigation Satellite System (Galileo). For the estimated FCBs, the Root Mean Squares (RMSs) of the posterior residuals are smaller than 0.1 cycles, which indicates a high consistency for the float ambiguities. The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems, while the STandard Deviation (STD) of the NL FCBs for BDS-2 is larger than 0.139 cycles. The combined FCBs have better stability than the raw series. With the multi-GNSS FCB products, the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations. For hourly static positioning results, the performance of the PPP AR with the three-system observations is improved by 42.6%, but only 13.1% for kinematic positioning results. The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo, supported by multi-GNSS satellite orbit, clock, and FCB products based on iGMAS.


2021 ◽  
Vol 13 (4) ◽  
pp. 793
Author(s):  
Guoqiang Jiao ◽  
Shuli Song ◽  
Qinming Chen ◽  
Chao Huang ◽  
Ke Su ◽  
...  

BeiDou global navigation satellite system (BDS) began to provide positioning, navigation, and timing (PNT) services to global users officially on 31 July, 2020. BDS constellations consist of regional (BDS-2) and global navigation satellites (BDS-3). Due to the difference of modulations and characteristics for the BDS-2 and BDS-3 default civil service signals (B1I/B3I) and the increase of new signals (B1C/B2a) for BDS-3, a systemically bias exists in the receiver-end when receiving and processing BDS-2 and BDS-3 signals, which leads to the inter-system bias (ISB) between BDS-2 and BDS-3 on the receiver side. To fully utilize BDS, the BDS-2 and BDS-3 combined precise time and frequency transfer are investigated considering the effect of the ISB. Four kinds of ISB stochastic models are presented, which are ignoring ISB (ISBNO), estimating ISB as random constant (ISBCV), random walk process (ISBRW), and white noise process (ISBWN). The results demonstrate that the datum of receiver clock offsets can be unified and the ISB deduced datum confusion can be avoided by estimating the ISB. The ISBCV and ISBRW models are superior to ISBWN. For the BDS-2 and BDS-3 combined precise time and frequency transfer using ISBNO, ISBCV, ISBRW, and ISBWN, the stability of clock differences of old signals can be enhanced by 20.18%, 23.89%, 23.96%, and 11.46% over BDS-2-only, respectively. For new signals, the enhancements are −50.77%, 20.22%, 17.53%, and −3.69%, respectively. Moreover, ISBCV and ISBRW models have the better frequency transfer stability. Consequently, we recommended the optimal ISBCV or suboptimal ISBRW model for BDS-2 and BDS-3 combined precise time and frequency transfer when processing the old as well as the new signals.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4046 ◽  
Author(s):  
Fabian Ruwisch ◽  
Ankit Jain ◽  
Steffen Schön

We present analyses of Global Navigation Satellite System (GNSS) carrier phase observations in multiple kinematic scenarios for different receiver types. Multi-GNSS observations are recorded on high sensitivity and geodetic-grade receivers operating on a moving zero-baseline by conducting terrestrial urban and aerial flight experiments. The captured data is post-processed; carrier phase residuals are computed using the double difference (DD) concept. The estimated noise levels of carrier phases are analysed with respect to different parameters. We find DD noise levels for L1 carrier phase observations in the range of 1.4–2 mm (GPS, Global Positioning System), 2.8–4.6 mm (GLONASS, Global Navigation Satellite System), and 1.5–1.7 mm (Galileo) for geodetic receiver pairs. The noise level for high sensitivity receivers is at least higher by a factor of 2. For satellites elevating above 30 ∘ , the dominant noise process is white phase noise. For the flight experiment, the elevation dependency of the noise is well described by the exponential model, while for the terrestrial urban experiment, multipath and diffraction effects overlay; hence no elevation dependency is found. For both experiments, a carrier-to-noise density ratio (C/N 0 ) dependency for carrier phase DDs of GPS and Galileo is clearly visible with geodetic-grade receivers. In addition, C/N 0 dependency is also visible for carrier phase DDs of GLONASS with geodetic-grade receivers for the terrestrial urban experiment.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Davide Margaria ◽  
Beatrice Motella ◽  
Fabio Dovis

One of the most promising features of the modernized global navigation satellite systems signals is the presence of pilot channels that, being data-transition free, allow for increasing the coherent integration time of the receivers. Generally speaking, the increased integration time allows to better average the thermal noise component, thus improving the postcorrelation SNR of the receiver in the acquisition phase. On the other hand, for a standalone receiver which is not aided or assisted, the acquisition architecture requires that only the pilot channel is processed, at least during the first steps of the procedure. The aim of this paper is to present a detailed investigation on the impact of the code cross-correlation properties in the reception of Galileo E1 Open Service and GPS L1C civil signals. Analytical and simulation results demonstrate that the S-curve of the code synchronization loop can be affected by a bias around the lock point. This effect depends on the code cross-correlation properties and on the receiver setup. Furthermore, in these cases, the sensitivity of the receiver to other error sources might increase, and the paper shows how in presence of an interfering signal the pseudorange bias can be magnified and lead to relevant performance degradation.


2015 ◽  
Vol 69 (2) ◽  
pp. 225-245 ◽  
Author(s):  
Hao Jing ◽  
James Pinchin ◽  
Chris Hill ◽  
Terry Moore

Indoor localisation has always been a challenging problem due to poor Global Navigation Satellite System (GNSS) availability in such environments. While inertial measurement sensors have become popular solutions for indoor positioning, they suffer large drifts after initialisation. Collaborative positioning enhances positioning robustness by integrating multiple localisation information, especially relative ranging measurements between local users and transmitters. However, not all ranging measurements are useful throughout the whole positioning process and integrating too much data will increase the computation cost. To enable a more reliable positioning system, an adaptive collaborative positioning algorithm is proposed which selects units for the collaborative network and integrates ranging measurement to constrain inertial measurement errors. The algorithm selects the network adaptively from three perspectives: the network geometry, the network size and the accuracy level of the ranging measurements between the units. The collaborative relative constraint is then defined according to the selected network geometry and anticipated measurement quality. In the case of trials with real data, the positioning accuracy is improved by 60% by adjusting the range constraint adaptively according to the selected network situation, while also improving the system robustness.


2020 ◽  
Author(s):  
Xavier Collilieux ◽  
Clément Courde ◽  
Bénédicte Fruneau ◽  
Mourad Aimar ◽  
Guillaume Schmidt ◽  
...  

<p>Geodetic observatories play a fundamental role in the determination of the International Terrestrial Reference System releases. They host several geodetic permanent instruments whose coordinates can be determined at the centimeter level or better. They comprise Global Navigation Satellite System (GNSS) permanent antenna/receivers, Satellite Laser Ranging (SLR) stations, Very Long Baseline Interferometry (VLBI) telescope and Doppler Orbitography Integrated by Satellite (DORIS) beacons. The Calern site of the Observatoire de la Côte d’Azur (OCA) is an example of such a multi-technique site located in the South of France. It hosts a DORIS beacon, a SLR/LLR station and two GNSS permanent stations.</p><p> </p><p>In the process of determining coordinates of geodetic instruments in a unified reference frame, the relative positions of the instruments at co-location sites are integrated in the ITRF combination. Thanks to the additional measurements obtained from local surveys, it is possible to determine global biases between coordinates determined by individual space geodetic techniques, and express them in the same reference system. An additional fundamental assumption of the combination process is that stations located on the same site do not move with respect to each other. Spaceborne Synthetic Aperture Radar Interferometry (INSAR technique), is an interesting tool to evaluate that hypothesis as it allows measuring ground displacements in the line of sight of the satellite,  and has been used only occasionally in the past for this purpose,. Notably, the Persistent Scatterer (PS) Interferometry enables determining time series of ground displacements on particular scatterers exhibiting phase stability in a stack (or series ?) of SAR images. To ensure the existence (or presence ?) of such PS, artificial corner reflectors can be installed.</p><p> </p><p>We present the procedure that we adapted from Parker et al. (2007) to install and validate the installation of a corner reflector at OCA observatory, close to the currently operating GNSS, SLR and DORIS stations, specifically designed for Sentinel-1 satellite. An initial local tie survey was carried out to assess the stability of the reflector through time.</p>


2019 ◽  
Vol 12 (1) ◽  
pp. 68 ◽  
Author(s):  
Wang ◽  
Jin ◽  
Yuan ◽  
Hu ◽  
Chen ◽  
...  

The third generation of China’s BeiDou Navigation Satellite System (BDS-3) began to provide global services on 27 December, 2018. Differential code bias (DCB) is one of the errors in precise BDS positioning and ionospheric modeling, but the impacts on BDS-2 satellites and receiver DCB are unknown after joining BDS-3 observations. In this paper, the BDS-3 DCBs are estimated and analyzed using the Multi-Global Navigation Satellite System (GNSS) Experiment (MGEX) observations during the period of day of year (DOY) 002–031, 2019. The results indicate that the estimated BDS-3 DCBs have a good agreement with the products provided by the Chinese Academy of Sciences (CAS) and Deutsche Zentrum für Luft- und Raumfahrt (DLR). The differences between our results and the other two products are within ±0.2 ns, with Standard Deviations (STDs) of mostly less than 0.2 ns. Furthermore, the effects on satellite and receiver DCB after adding BDS-3 observations are analyzed by BDS-2 + BDS-3 and BDS-2-only solutions. For BDS-2 satellite DCB, the values of effect are close to 0, and the effect on stability of DCB is very small. In terms of receiver DCB, the value of effect on each station is related to the receiver type, but their mean value is also close to 0, and the stability of receiver DCB is better when BDS-3 observations are added. Therefore, there is no evident systematic bias between BDS-2 and BDS-2 + BDS-3 DCB.


2013 ◽  
Vol 5 (2) ◽  
pp. 2389-2418
Author(s):  
H. Steffen ◽  
P. Wu

Abstract. We present the sensitivity of Global Navigation Satellite System (GNSS) measurements at selected GNSS stations used both in the EUREF Permanent Network as well as in the BIFROST project to distinct areas in a laterally heterogeneous upper mantle beneath Fennoscandia. We therefore use a three-dimensional finite element model for glacial isostatic adjustment (GIA) calculations. The underlying structure is based on the S20A seismic tomography model, whose shear-wave velocities have been transformed into a viscosity structure of the upper mantle. Lower mantle is not investigated as previous results showed negligible sensitivity of Fennoscandian GIA data to it. We subdivide the upper mantle in four layers with lateral viscosity structure. Areas with similar viscosity within a layer are combined to larger blocks. Further subdivision is made into areas inside and outside the formerly glaciated areas. This leads to about 20 differently shaped areas per layer. We then calculate the sensitivity kernels at 10 selected GNSS stations for all blocks in comparison to a well-fitting one-dimensional GIA model. We find that GNSS stations are most sensitive to mantle viscosity in the near surrounding of the station, i.e. in the nearest about 250 km, and only within the formerly glaciated area. This area can be enlarged up to 800 km when velocities of stations in the uplift center are investigated. There is no indication of sufficiently high sensitivity of all investigated GNSS stations to regions outside the glaciated area. We also note that in the first mantle layer (70–250 km depth) below the lithosphere, there is only small sensitivity to parts along the Norwegian coast. Most prominent features in the Fennoscandian upper mantle may be detected in the second (250–450 km depth) and third layer (450–550 km depth). In future investigations on the lateral viscosity structure using GNSS measurements one should only consider GNSS stations within the area of former glaciation. They can be further grouped to address certain areas. In a combination with other GIA data, e.g. relative sea-level and gravity data, it is then highly recommended to assign more weight on those GNSS results with high sensitivity in order to determine the viscosity of a certain region.


2021 ◽  
Vol 13 (10) ◽  
pp. 1967
Author(s):  
Meng Wang ◽  
Tao Shan ◽  
Wanwei Zhang ◽  
Hao Huan

The utilization of Global Navigation Satellite System (GNSS) is becoming an attractive navigation approach for geostationary orbit (GEO) satellites. A high-sensitivity receiver compatible with Global Position System (GPS) developed by the United States and BeiDou Navigation Satellite System (BDS) developed by China has been used in a GEO satellite named TJS-5 to demonstrate feasibility of real-time navigation. According to inflight data, the GNSS signal characteristics including availability, position dilution of precision (PDOP), carrier-to-noise ratio (C/N0), observations quantity and accuracy are analyzed. The mean number of GPS and GPS + BDS satellites tracked are 7.4 and 11.7 and the mean PDOP of GPS and GPS + BDS are 10.24 and 3.91, respectively. The use of BDS significantly increases the number of available navigation satellites and improves the PDOP. The number of observations with respect to C/N0 is illustrated in detail. The standard deviation of the pseudorange noises are less than 4 m, and the corresponding carrier phase noises are mostly less than 8 mm. We present the navigation performance using only GPS observations and GPS + BDS observations combination at different weights through comparisons with the precision reference orbits. When GPS combined with BDS observations, the root mean square (RMS) of the single-epoch least square position accuracy can improve from 32.1 m to 16.5 m and the corresponding velocity accuracy can improve from 0.238 m/s to 0.165 m/s. The RMS of real-time orbit determination position accuracy is 5.55 m and the corresponding velocity accuracy is 0.697 mm/s when using GPS and BDS combinations. Especially, the position accuracy in x-axis direction reduced from 7.24 m to 4.09 m when combined GPS with BDS observations.


2021 ◽  
Vol 14 (1) ◽  
pp. 35
Author(s):  
Yang Nan ◽  
Shirong Ye ◽  
Jingnan Liu ◽  
Bofeng Guo ◽  
Shuangcheng Zhang ◽  
...  

In recent years, Global Navigation Satellite System Reflectometry (GNSS-R) technology has made considerable progress with the increasing of GNSS-R satellites in orbit, the improvements of GNSS-R data processing technology, and the expansion of its geophysical applications. Meanwhile, with the modernization and evolution of GNSS systems, more signal sources and signal modulation modes are available. The effective use of the signals at different frequencies or from new GNSS systems can improve the accuracy, reliability, and resolution of the GNSS-R data products. This paper analyses the signal-to-noise ratio (SNR) of the GNSS-R measurements from Galileo and BeiDou-3 (BDS-3) systems, which is one of the important indicators to measure the quality of GNSS-R data. The multi-GNSS (GPS, Galileo and BDS-3) complex waveform products generated from the raw intermediate frequency data from TechDemoSat-1 (TDS-1) satellite and Cyclone Global Navigation Satellite System (CYGNSS) constellation are used for such analyses. The SNR and normalized SNR (NSNR) of the reflected signals from Galileo and BDS-3 satellites are compared to these from GPS. Preliminary results show that the GNSS-R SNRs from Galileo and BDS-3 are ∼1–2 dB lower than the GNSS-R measurements from GPS, which could be due to the power of the transmitted power and the bandwidth of the receiver. In addition, the effect of coherent integration time on GNSS-R SNR is also assessed for different GNSS signals. It is shown that the SNR of the reflected signals can be improved by using longer coherent integration time (∼0.4–0.8 dB with 2 ms coherent integration and ∼0.6–1.2 dB with 4 ms coherent integration). In addition, it is also shown that the SNR can be improved more efficiently (∼0.2–0.4 dB) for reflected BDS-3 and Galileo signals than for GPS. These results can provide useful references for the design of future spaceborne GNSS-R instrument compatible with reflections from multi-GNSS constellations.


Sign in / Sign up

Export Citation Format

Share Document