Generating 3D Depiction for a Future ECDIS Based on Digital Earth

2014 ◽  
Vol 67 (6) ◽  
pp. 1049-1068 ◽  
Author(s):  
Tao Liu ◽  
Depeng Zhao ◽  
Mingyang Pan

An Electronic Navigational Chart (ENC) is a two-dimensional abstraction and generalisation of the real world and it limits users' ability to obtain more real and rich spatial information of the navigation environment. However, a three-dimensional (3D) chart could dramatically reduce the number of human errors and improve the accuracy and efficiency of manoeuvring. Thus it is important to be able to visualize charts in 3D. This article proposes a new model for future Electronic Chart Display and Information Systems (ECDIS) and describes our approach for the construction of web-based multi-resolution future ECDIS implemented in our system Automotive Intelligent Chart (AIC) 3D ECDIS, including multi-resolution riverbed construction technology, multi-layer technology for data fusion, Mercator transformation of the model, rendering and web publishing methods. AIC 3D ECDIS can support global spatial data and 3D visualization, which merges the 2D vector electronic navigational chart with the three-dimensional navigation environment in a unified framework and interface, and is also published on the web to provide application and data service through the network.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Seokchan Kang ◽  
Jiyeong Lee

A dedicated plug-in has been installed to visualize three-dimensional (3D) city modeling spatial data in web-based applications. However, plug-in methods are gradually becoming obsolete, owing to their limited performance with respect to installation errors, unsupported cross-browsers, and security vulnerability. Particularly, in 2015, the NPAPI service was terminated in most existing web browsers except Internet Explorer. To overcome these problems, the HTML5/WebGL (next-generation web standard, confirmed in October 2014) technology emerged. In particular, WebGL is able to display 3D spatial data without plug-ins in browsers. In this study, we attempted to identify the requirements and limitations of displaying 3D city modeling spatial data using HTML5/WebGL, and we propose alternative ways based on the bin-packing algorithm that aggregates individual 3D city modeling data including buildings in tile units. The proposed method reduces the operational complexity and the number and volume of transmissions required for rendering processing to improve the speed of 3D data rendering. The proposed method was validated on real data for evaluating its effectiveness in 3D visualization of city modeling data in web-based applications.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2018 ◽  
pp. 31-63 ◽  
Author(s):  
Lukáš Herman ◽  
Tomáš Řezník ◽  
Zdeněk Stachoň ◽  
Jan Russnák

Various widely available applications such as Google Earth have made interactive 3D visualizations of spatial data popular. While several studies have focused on how users perform when interacting with these with 3D visualizations, it has not been common to record their virtual movements in 3D environments or interactions with 3D maps. We therefore created and tested a new web-based research tool: a 3D Movement and Interaction Recorder (3DmoveR). Its design incorporates findings from the latest 3D visualization research, and is built upon an iterative requirements analysis. It is implemented using open web technologies such as PHP, JavaScript, and the X3DOM library. The main goal of the tool is to record camera position and orientation during a user’s movement within a virtual 3D scene, together with other aspects of their interaction. After building the tool, we performed an experiment to demonstrate its capabilities. This experiment revealed differences between laypersons and experts (cartographers) when working with interactive 3D maps. For example, experts achieved higher numbers of correct answers in some tasks, had shorter response times, followed shorter virtual trajectories, and moved through the environment more smoothly. Interaction-based clustering as well as other ways of visualizing and qualitatively analyzing user interaction were explored.


Author(s):  
Scott Neurauter ◽  
Sabrina Szeto ◽  
Matt Tindall ◽  
Yan Wong ◽  
Chris Wright

3D visualization is the process of displaying spatial data to simulate and model a real three dimensional space. Using 3D visualization, Geomatic professionals are enabling pipeline engineers to make better decisions by providing an increased understanding of potential costs earlier in the design process. This paper will focus on the value of visualizing Digital Elevation Model (DEM) data through the use of hillshades and imagery-draped 3D models. From free online DEM data to high resolution Light Detection and Ranging (LiDAR) derived DEM data, the increased availability allows for a broader use of 3D visualization techniques beyond 3D analysis. Of the numerous sources available, two DEM sources will be discussed in this paper, the free low resolution DEM (CDED Level 1) and the more costly but higher resolution LiDAR based DEM. Traditional methods of evaluating potential locations for route and facilities involved a significant cost for ground truthing. Through the use of 3D visualization products, multiple potential locations can be examined for suitability without the expense of field visits for every candidate site. By focusing on the selected candidate locations using a visual desktop study, the time and expense of ground truthing all of the potential sites can be reduced significantly. Exploiting the visual value of DEM permits a productive and cost efficient methodology for initial route and facility placement on hydrocarbon projects.


2019 ◽  
Vol 11 (17) ◽  
pp. 1957 ◽  
Author(s):  
Jingya Yan ◽  
Siow Jaw ◽  
Kean Soon ◽  
Andreas Wieser ◽  
Gerhard Schrotter

With the pressure of the increasing density of urban areas, some public infrastructures are moving to the underground to free up space above, such as utility lines, rail lines and roads. In the big data era, the three-dimensional (3D) data can be beneficial to understand the complex urban area. Comparing to spatial data and information of the above ground, we lack the precise and detailed information about underground infrastructures, such as the spatial information of underground infrastructure, the ownership of underground objects and the interdependence of infrastructures in the above and below ground. How can we map reliable 3D underground utility networks and use them in the land administration? First, to explain the importance of this work and find a possible solution, this paper observes the current issues of the existing underground utility database in Singapore. A framework for utility data governance is proposed to manage the work process from the underground utility data capture to data usage. This is the backbone to support the coordination of different roles in the utility data governance and usage. Then, an initial design of the 3D underground utility data model is introduced to describe the 3D geometric and spatial information about underground utility data and connect it to the cadastral parcel for land administration. In the case study, the newly collected data from mobile Ground Penetrating Radar is integrated with the existing utility data for 3D modelling. It is expected to explore the integration of new collected 3D data, the existing 2D data and cadastral information for land administration of underground utilities.


2014 ◽  
Vol 608-609 ◽  
pp. 928-932
Author(s):  
Dong Ya Jin

The platform uses three-dimensional data modeling, visual simulation and spatial data storage to make the business of regulation center, operation and maintenance center and marketing and management center of Beijing Power grid implement visualized operation, and load the spatial information data, equipment data and operation data of Beijing power grid into the system platform, and the data is displayed with the form of graphic or image, which not only realizes managing space resource data in real three-dimensional scene, but also make the system operator to know the operation state of the system directly, and makes the control measures more effective. And the paper uses virtual reality technology to establish visual scene of ground to realize integrated visual display of power transformation, power transmission and power distribution, which not only makes the producers, managers and decision makers directly master the situation of production line in power station, but also realizes that producers and managers affiliate decision makers to formulate production plan.


2012 ◽  
Vol 529 ◽  
pp. 195-199
Author(s):  
Qiu Long Liu ◽  
Wu Sheng Hu

3D (three-dimensional) laser scanning can be used to collect spatial location of points rapidly and abundantly, and obtain three-dimensional coordinates of the target surface, which provides new technical means for the rapid creation of three-dimensional image model of the object. A three-dimensional modeling study on spatial object was carried out using the spatial data captured via ground-based 3D laser scanner in the Hui-Quan substation. The experiment result shows that rapid 3D visualization modeling on buildings can be achieved via the methods and procedures mentioned above. It has solved that the traditional equipment and the measuring technique is insufficiency in the special domain. It will bring the application mode and technical advantage, which tradition mapping way can not have. A platform for three-dimensional model of the substation can be achieved for the resources, landscape, security, environmental management and other social resources of digital, networked and dynamic visualization.


2021 ◽  
Author(s):  
Mihal Miu ◽  
Xiaokun Zhang ◽  
M. Ali Akber Dewan ◽  
Junye Wang

Geospatial information plays an important role in environmental modelling, resource management, business operations, and government policy. However, very little or no commonality between formats of various geospatial data has led to difficulties in utilizing the available geospatial information. These disparate data sources must be aggregated before further extraction and analysis may be performed. The objective of this paper is to develop a framework called PlaniSphere, which aggregates various geospatial datasets, synthesizes raw data, and allows for third party customizations of the software. PlaniSphere uses NASA World Wind to access remote data and map servers using Web Map Service (WMS) as the underlying protocol that supports service-oriented architecture (SOA). The results show that PlaniSphere can aggregate and parses files that reside in local storage and conforms to the following formats: GeoTIFF, ESRI shape files, and KML. Spatial data retrieved using WMS from the Internet can create geospatial data sets (map data) from multiple sources, regardless of who the data providers are. The plug-in function of this framework can be expanded for wider uses, such as aggregating and fusing geospatial data from different data sources, by providing customizations to serve future uses, which the capacity of the commercial ESRI ArcGIS software is limited to add libraries and tools due to its closed-source architectures and proprietary data structures. Analysis and increasing availability of geo-referenced data may provide an effective way to manage spatial information by using large-scale storage, multidimensional data management, and Online Analytical Processing (OLAP) capabilities in one system.


2014 ◽  
Vol 926-930 ◽  
pp. 721-724
Author(s):  
Zhao Zhong Gao ◽  
Hai Xia Wei

With the digital development of city construction, the construction of three-dimensional Geographic Information System plays an important role for the urban construction planning and decision-making. 3D urban planning geographic information management systems need to be able to put different spatial data, information of urban construction, urban planning information into the same platform. The integration of information resources whick provids a variety of spatial information based on the intelligent application services is the core. This article puts urban planning geographic information management related to business needs in-depth analysis, and put forward a three-dimensional geographic information model which is used for integrated management of data and can be dynamically adjusted for urban planning and management of business processes.


2013 ◽  
Vol 353-356 ◽  
pp. 2948-2952
Author(s):  
Zheng Zhong Wu ◽  
Jun Ping Liu ◽  
Jing Jin ◽  
Hua Wang

To resolve the problem that underground pipe network is large, complex, and difficult to manage, the management model based on ArcGIS was used. This paper aimed to transform the traditional data types of underground pipe network to a new type based on ArcGIS and to make statistical analysis and thematic maps output to the attribute datas for all underground pipes mainly including water supply network and drainage network. Through the analysis of pipe network visualization model implementation to build the spatial data model of three-dimensional pipe network, the automatic model from 2D to 3D would be achieved, then the new ways to realize the 3D visualization of urban underground pipe network would be provided. Taking the underground pipe network of a city as an example, the management system based on ArcGIS was built. The system running results show that the system could achieve the digital management of underground pipe network for the city and improve the management efficiency of the entire system.


Sign in / Sign up

Export Citation Format

Share Document