Climate change and conservation implications for wet meadows in dry Patagonia

2013 ◽  
Vol 41 (2) ◽  
pp. 122-131 ◽  
Author(s):  
RAMIRO D. CREGO ◽  
CLAYTON K. NIELSEN ◽  
KARL A. DIDIER

SUMMARYClimate change is predicted to be a major threat for biodiversity and, from a conservation prospective, it is important to understand how ecosystems may respond to that change. Predicted climate change effects on the distribution of meadows in the arid and semi-arid Argentinean Patagonia by 2050 were assessed for change trends and areas of desertification vulnerability using species distribution models (SDM) and climate-change models. Four modelling techniques composed an ensemble-forecasting approach. Suitable areas for meadows will decrease by 7.85% by 2050 given predicted changes in climate. However, there were two contrasting trends: severe reduction of suitable areas for meadows in north-west Patagonia and Tierra del Fuego Island, and an expansion of suitable areas for meadows in the south and a small section in the north-west. Meadows in Patagonia will likely be impacted by climate change, probably due to changes in precipitation regimes, and consequently many species that rely on meadows in an arid environment will also be impacted. Given the low level of protection of meadows in Patagonia, such information on meadow distribution and vulnerability to climate change will be important for increasing and improving the network of conservation areas through conservation planning.

Author(s):  
I. B. Uskov ◽  
◽  
K. G. Moiseyev ◽  
M. V. Nikolaev ◽  
O. V. Kononenko ◽  
...  

Purpose: to analyze the soil-climatic and anthropogenic reasons of decreasing drainage efficiency of closed pottery tubular drainage on the reclaimed lands of the North-West of Russia under the observed local weather conditions against the background of global climate changes. Materials and methods. The objects of research are seasonal precipitation regimes, reclaimed lands and drainage systems of closed tubular drainage. The methods of applied mathematical statistics, the ensemble method of processing and generalization of climate forecasts of the Intergovernmental Panel on Climate Change (IPCC), modernized by the authors were used in research. Monitoring data on changes in the physical properties of soils of reclaimed lands during their long-term operation were obtained using laboratory agrophysical methods for studying samples taken in the field. Results. It is shown that under the conditions of the observed climatic changes, the frequency, intensity and extremeness of atmospheric precipitation are increased. Long-term exploitation of lands with a leaching drainage regime is accompanied by changes in the hydrophysical properties of soils, for example, the coefficient of heterogeneity of the subsurface horizons of soils texture of automorphic genesis decreased from 26 to 6. The system “precipitation – soil – drainage” in climatically abnormal weather conditions exceeding the initial calculated precipitation level mode by 10–20 %, is unable to ensure the removal of excess moisture from the root layer. Conclusions: when creating and reconstructing such reclamation drainage systems it is recommended to take into account the tendencies of changes in the spatial-temporal statistical structure of precipitation and to design technologies for regulating the water regime with systems for intercepting and diverting surface runoff on such reclaimed lands.


2021 ◽  
Author(s):  
Anna Ferretto ◽  
Pete Smith ◽  
David Genney ◽  
Robin Matthews ◽  
Rob Brooker

AbstractSpecies distribution models (SDMs) have been widely used to predict species ranges and their future distribution under climate change scenarios. In this study we applied Maxent, one of the most used SDMs, to project the distribution of some rare bryophyte species in Scotland in the 2050s. Most of these species are strongly linked to the blanket bog habitat, which is threatened by climate change in the near future. To assess the extent to which changes in habitat distribution leads to a different modelled distribution of the selected bryophytes, blanket bog distribution was included in the model as one of the explanatory variables for some species, and Maxent was run for three 2050s scenarios: once with the current blanket bog distribution and two other runs using the blanket bog distribution derived from two bioclimatic models (Lindsay modified and Blanket Bog Tree model) under the same climate change scenario. For seven out of nine of our studied bryophyte species, the modelled distribution in Scotland was predicted to decline, with some species retreating towards the north-west and other species almost disappearing. When the change in blanket bog distribution was also accounted for, further areas in the north/centre east of Scotland and in the south were predicted to be unfavourable for many of the species considered. Our findings suggest that when modelling species distributions, habitat distribution also needs to be considered, especially when there is a strong relationship between the species and a particular habitat.


2020 ◽  
Vol 12 (24) ◽  
pp. 10420
Author(s):  
Ioannis Chatziioannou ◽  
Efthimios Bakogiannis ◽  
Charalampos Kyriakidis ◽  
Luis Alvarez-Icaza

One of the biggest challenges of our time is climate change. Every day, at different places of the world, the planet sends alarming messages about the enormous transformations it is experiencing due to human-based activities. The latter are responsible for changing weather patterns that threaten food production, energy production and energy consumption, the desertification of land, the displacement of people and animals because of food and water shortages due to the reductions in rainfall, natural disasters and rising sea levels. The effects of climate change affect us all, and if drastic measures are not considered in a timely manner, it will be more difficult and costly to adapt to the aforementioned effects in the future. Considering this context, the aim of this work is to implement a prospective study/structural analysis to the identified sectors of a regional plan of adaptation to climate change so as to promote the resilience of the region against the negative phenomena generated by the climate crisis. This was achieved in two steps: first, we identified the relationships between the strategic sectors of the plan and organized them in order of importance. Second, we assessed the effectiveness of several public policies oriented towards a city’s resilience according to their impact upon the strategic sectors of the plan and the co-benefits generated by their implementation for society. The results highlight that the most essential sectors for the mitigation of climate change are flood risk management, built environment, forest ecosystem management, human health, tourism and rise in sea level. As a consequence, the most important measures for the resilience of the North Aegean Region against climate change are the ones related to the preparation of strategic master plans for flood protection projects.


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


2021 ◽  
Vol 163 ◽  
pp. 105230
Author(s):  
Michael Weinert ◽  
Moritz Mathis ◽  
Ingrid Kröncke ◽  
Thomas Pohlmann ◽  
Henning Reiss

2021 ◽  
Vol 9 ◽  
Author(s):  
Lara Valderrama ◽  
Salvador Ayala ◽  
Carolina Reyes ◽  
Christian R. González

The extreme north of Chile presents a subtropical climate permissive of the establishment of potential disease vectors. Anopheles (Ano.) pseudopunctipennis is distributed from the south of the United States to the north of Argentina and Chile, and is one of the main vectors of malaria in Latin America. Malaria was eradicated from Chile in 1945. Nevertheless, the vector persists in river ravines of the Arica and Tarapacá regions. The principal effect of climate change in the north of Chile is temperature increase. Precipitation prediction is not accurate for this region because records were erratic during the last century. The objective of this study was to estimate the current and the projected distribution pattern of this species in Chile, given the potential impact due to climate change. We compiled distributional data for An. (Ano.) pseudopunctipennis and constructed species distribution models to predict the spatial distribution of this species using the MaxEnt algorithm with current and RCP 4.5 and 8.5 scenarios, using environmental and topographic layers. Our models estimated that the current expected range of An. (Ano.) pseudopunctipennis extends continuously from Arica to the north of Antofagasta region. Furthermore, the RCP 4.5 and 8.5 projected scenarios suggested that the range of distribution of An. (Ano.) pseudopunctipennis may increase in longitude, latitude, and altitude limits, enhancing the local extension area by 38 and 101%, respectively, and local presence probability (>0.7), from the northern limit in Arica y Parinacota region (18°S) to the northern Antofagasta region (23°S). This study contributes to geographic and ecologic knowledge about this species in Chile, as it represents the first local study of An. (Ano.) pseudopunctipennis. The information generated in this study can be used to inform decision making regarding vector control and surveillance programs of Latin America. These kinds of studies are very relevant to generate human, animal, and environmental health knowledge contributing to the “One Health” concept.


Author(s):  
Daiki Tsujio ◽  
Paul Bates

Climate change and increases in population density in coastal areas might increase the difficulty of coastal management decision-making. Although recent research has proposed several flood risk assessment methods in response to climate change, few approaches have addressed all significant effects. Therefore, this study aims to establish a thorough method to evaluate the risks of future coastal flooding events, including all climate change effects. The study proposes an advanced risk analysis scheme that covers all annual flood events during a target term. To confirm the effectiveness of the proposed model, this study applies the model to actual risk analysis in the North Somerset coast in the UK under 10 different cases.


2014 ◽  
Vol 72 (3) ◽  
pp. 741-752 ◽  
Author(s):  
Miranda C. Jones ◽  
William W. L. Cheung

Abstract Species distribution models (SDMs) are important tools to explore the effects of future global changes in biodiversity. Previous studies show that variability is introduced into projected distributions through alternative datasets and modelling procedures. However, a multi-model approach to assess biogeographic shifts at the global scale is still rarely applied, particularly in the marine environment. Here, we apply three commonly used SDMs (AquaMaps, Maxent, and the Dynamic Bioclimate Envelope Model) to assess the global patterns of change in species richness, invasion, and extinction intensity in the world oceans. We make species-specific projections of distribution shift using each SDM, subsequently aggregating them to calculate indices of change across a set of 802 species of exploited marine fish and invertebrates. Results indicate an average poleward latitudinal shift across species and SDMs at a rate of 15.5 and 25.6 km decade−1 for a low and high emissions climate change scenario, respectively. Predicted distribution shifts resulted in hotspots of local invasion intensity in high latitude regions, while local extinctions were concentrated near the equator. Specifically, between 10°N and 10°S, we predicted that, on average, 6.5 species would become locally extinct per 0.5° latitude under the climate change emissions scenario Representative Concentration Pathway 8.5. Average invasions were predicted to be 2.0 species per 0.5° latitude in the Arctic Ocean and 1.5 species per 0.5° latitude in the Southern Ocean. These averaged global hotspots of invasion and local extinction intensity are robust to the different SDM used and coincide with high levels of agreement.


2002 ◽  
Vol 5 (1) ◽  
pp. 9-23 ◽  
Author(s):  
Clive Bonsall ◽  
Mark G. Macklin ◽  
David E. Anderson ◽  
Robert W. Payton

Farming can be shown to have spread very rapidly across the British Isles and southern Scandinavia around 6000 years ago, following a long period of stasis when the agricultural ‘frontier’ lay further south on the North European Plain between northern France and northern Poland. The reasons for the delay in the adoption of agriculture on the north-west fringe of Europe have been debated by archaeologists for decades. Here, we present fresh evidence that this renewed phase of agricultural expansion was triggered by a significant change in climate. This finding may also have implications for understanding the timing of the expansion of farming into some upland areas of southern and mid-latitude Europe.


Sign in / Sign up

Export Citation Format

Share Document