BioDiv-Support: scenario-based decision support tool for policy planning and adaptation to future challenges in biodiversity and ecosystem services 

Author(s):  
Camilla Andersson ◽  

<p>Biodiversity includes any type of living variation, from the ecosystem level to genetic variation within organisms. The greatest threats to biodiversity is climate change, destruction of habitats and other human activities. High-altitude mountain regions are pristine environments, with historically small impacts from air pollution, but at risk of being disproportionately impacted by climate change. We focus on three mountainous regions: the Scandinavian Mountains, the Guadarrama Mountains in Spain, and the Pyrenees in France, Andorra and Spain. We study the impact of drivers of change of biodiversity such as future climate change, increased incidences of wild fires, emissions from new shipping routes in the Arctic as ice sheets are melting, human impacts on land use and management practices (such as reindeer grazing) and air pollution.</p><p>We simulate future climate change using WRF and a convective permitting climate model, HARMONIE-Climate, with a spatial resolution of 3km. The high resolution strongly improves the representation of precipitation compared to coarser scale simulations (Lind et al., 2020). We use these simulations to develop future scenarios of air pollution load, using two well established chemistry transport models (MATCH and CHIMERE; Marécal et al., 2015). These climate and air pollution scenarios are subsequently used, together with management scenarios, to develop scenarios for biodiversity and ecosystem services. These scenarios are developed applying a process-based dynamic vegetation and biogeochemistry model, LPJ-GUESS (Smith et al., 2014). </p><p>The scenarios, representing mid-21<sup>st</sup> century, will be made available through a web-based planning tool, where local stakeholders in each region can explore the project results to understand how scenarios of climate change, air pollution and policy development will affect these ecosystems. Local stakeholders are involved throughout the project, such as reindeer herder communities, regional county boards and national authorities, and in a time of changing climate and a global pandemic we have learned the necessity for flexibility in such interactions.</p><p> </p><p>References</p><p>Lind et al. 2020., Climate Dynamics 55, 1893-1912.</p><p>Marécal et al., 2015. Geosci. Mod. Dev. 8, 2777-2813.</p><p>Smith et al. 2014 Biogeosciences 11, 2027-2054.</p>

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Climate ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Suzanna Meeussen ◽  
Anouschka Hof

Climate change is expected to have an impact on the geographical distribution ranges of species. Endemic species and those with a restricted geographic range may be especially vulnerable. The Persian jird (Meriones persicus) is an endemic rodent inhabiting the mountainous areas of the Irano-Turanian region, where future desertification may form a threat to the species. In this study, the species distribution modelling algorithm MaxEnt was used to assess the impact of future climate change on the geographic distribution range of the Persian jird. Predictions were made under two Representative Concentration Pathways and five different climate models for the years 2050 and 2070. It was found that both bioclimatic variables and land use variables were important in determining potential suitability of the region for the species to occur. In most cases, the future predictions showed an expansion of the geographic range of the Persian jird which indicates that the species is not under immediate threat. There are however uncertainties with regards to its current range. Predictions may therefore be an over or underestimation of the total suitable area. Further research is thus needed to confirm the current geographic range of the Persian jird to be able to improve assessments of the impact of future climate change.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2021 ◽  
Vol 18 (18) ◽  
pp. 5053-5083
Author(s):  
Jessica L. McCarty ◽  
Juha Aalto ◽  
Ville-Veikko Paunu ◽  
Steve R. Arnold ◽  
Sabine Eckhardt ◽  
...  

Abstract. In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2.5 emissions from wildfires above 50 and 65∘ N are larger than emissions from the anthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60∘ N, with 56 % of black carbon emissions above 65∘ N in 2020 attributed to open biomass burning – indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.


Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


2017 ◽  
Vol 17 ◽  
pp. 139-154 ◽  
Author(s):  
A. Araya ◽  
I. Kisekka ◽  
X. Lin ◽  
P.V. Vara Prasad ◽  
P.H. Gowda ◽  
...  

2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Patricia Guzmán ◽  
Patricia Tarín-Carrasco ◽  
María Morales-Suarez-Varela

<p>Air pollution has a serious impact on health and this problem will be aggravated under the action of climate change. This climate penalty can play an important role when trying to assess future impacts of air pollution on several pathologies. Among these diseases, the scientific literature is scarce when referring to the influence of atmospheric pollutants on neurodegenerative diseases for future climate change scenarios. Under this framework, this contribution evaluates the incidence of dementia (Alzheimer's disease and vascular dementia) occurring in Europe due to exposure of air pollution (essentially NO<sub>2</sub> and PM2.5) for the present climatic period (1991-2010) and for a future climate change scenario (RCP8.5, 2031-2050). The GEMM methodology has been applied to climatic air pollution simulations using the chemistry/climate regional model WRF-Chem. Present population data were obtained from NASA's Center for Socioeconomic Data and Applications (SEDAC); while future population projections for the year 2050 were derived from the United Nations (UN) Department of Economic and Social Affairs-Population Dynamics.</p><p>Overall, the estimated incidence of Alzheimer's disease and vascular dementia associated to air pollution over Europe is 498,000 [95% confidence interval (95% CI) 348,600-647,400] and 314,000 (95% CI 257,500-401,900) new cases per year, respectively. An important increase in the future incidence is projected (around 72% for both types of dementia) when considering the effect of climate change together with the foreseen changes in the dynamics of population (expected aging of European population). The climate penalty has a limited effect on the total changes of Alzheimer's disease and vascular dementia (approx. 0.5%), since the large increase in new annual cases over southern Europe is offset by the decrease of the incidence associated to these pathologies over more northern countries, favored by an improvement of air pollution caused by the projected enhancement of rainfall.</p>


2021 ◽  
Author(s):  
Laura Dziomber ◽  
Lisa Gurtner ◽  
Maria Leunda ◽  
Christoph Schwörer

<p>Current and future climate change is a serious threat to biodiversity and ecosystem stability. With a rapid increase of global temperatures by 1.5°C since the pre-industrial period and a projected warming of 1.5-4°C by the end of this century, plant species are forced to either adapt to these changes, shift their distribution range to higher elevation, or face population decline and extinction. Today, there is an urgent need to better understand the responses of mountain vegetation to climate change in order to predict the consequences of the human-driven global change currently occurring during the Anthropocene and maintain species diversity and ecosystem services. However, most predictions are based on short-term experiments. There is, in general, an insufficient use of longer time scales in conservation biology to understand long-term processes. Palaeoecological data are a great source of information to infer past species responses to changing environmental factors, such as climate or anthropogenic disturbances.</p><p>The last climate change of a similar magnitude and rate as projected for this century was the transition between the last Ice Age and the Holocene interglacial (ca. 11,700 years ago). By analyzing subfossil plant remains such as plant macrofossils, charcoal and pollen from natural archives, we can study past responses to climate change. However, until recently it was not possible to reconstruct changes at the population level. With the development of new methods to extract ancient DNA (aDNA) from plant remains and next generation DNA-sequencing techniques, we can now infer past population dynamics by analyzing the genetic variation through time. Ancient DNA might also be able to reveal if species could adapt to climatic changes by identifying intraspecific variation of specific genes related to climatic adaptations.</p><p>We are currently investigating a palaeoecological archive from a high-altitude mountain lake, Lai da Vons (1991 m a.s.l), situated in Eastern Switzerland. We are presenting preliminary macrofossil, pollen and charcoal results to reconstruct local to regional vegetation and fire dynamics with high chronological precision and resolution. In a next step, we will use novel molecular methods, in order to track adaptive and neutral genetic diversity through the Holocene by analyzing aDNA from subfossil conifer needles. The overarching goal of this large-scale, multiproxy study is to better understand past vegetation dynamics and the impact of future climate change on plants at multiple scales; from the genetic to the community level.</p><p> </p>


2021 ◽  
pp. 26-31
Author(s):  
Cyril Caminade

Abstract This expert opinion provides an overview of mathematical models that have been used to assess the impact of climate change on ticks and tick-borne diseases, ways forward in terms of improving models for the recent context and broad guidelines for conducting future climate change risk assessment.


Sign in / Sign up

Export Citation Format

Share Document