Electron Microscopy and Chemistry

Author(s):  
John Turkevich

During the last twenty-five years there has been a marked increase in the number of chemical problems that have been attacked by the various methods of electron microscopy. In addition there has been a development of sophistication in the diverse techniques of sample preparation. The electron microscope has been used in fundamental studies to characterize the texture of matter—that state of organization of matter more complex than that of larger molecules and smaller than the details that can be revealed by optical microscopy. This has brought about an understanding of the size and shape of colloidal particles, the pore distribution of membranes, the topology of surfaces and the density and character of dislocations in solids. Particle size distribution curves obtained with the electron microscope have found widespread practical application in the pigment manufacture, rubber reinforcement, fiber studies, catalyst characterization, and polymer research.

1991 ◽  
Vol 35 (B) ◽  
pp. 1055-1061
Author(s):  
V. V. Zagorodny ◽  
V. I. Karmanov

AbstractA new experimental calculation method for polydisperse (i.e. heterogeneous) multicomponent material analysis has been developed using the dependence of element fluorescence intensity on the particle size and its distribution in the specimen. It is shown that correction of the influence of matrix particle size is possible using this experimental calculation method. For its application, the information on particle size distribution for each of the components is sufficient. Sample preparation includes only the pelleting of specimens under standard conditions. The efficiency of the method proposed is demonstrated by the analysis of the multicomponent mixtures of welding materials.


2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


2019 ◽  
Vol 2 (98) ◽  
pp. 81-84
Author(s):  
K. Szmajnta ◽  
M. Szindler

Purpose: The main purpose of this publication is to bring closer method of synthesis and examining basic properties of TiO2, ZnO and NiO nanoparticles (NPs), and investigate their possible biomedical application. Design/methodology/approach: Nanopowders were made with sol-gel method. Surface morphology studies of the obtained materials were made using Zeiss's Supra 35 scanning electron microscope and the structure using S/TEM TITAN 80-300 transmission electron microscope. In order to confirm the chemical composition of observed nanopowders, qualitative tests were performed by means of spectroscopy of scattered X -ray energy using the Energy Dispersive Spectrometer (EDS). The DLS (Dynamic Light Scattering) method was used to analyse the particle size distribution using the AntonPaar Litesizer 500 nanoparticle size analyser. Changes in particle size distribution at elevated temperatures were also observed. The TiO2, ZnO and NiO NPs with spherical shape were successfully produced by sol-gel method. Findings: The diameter of the as prepared nanoparticles does not exceed 25 nm which is confirmed by the TEM analysis. The highest proportion among the agglomerates of the nanoparticles has been shown to show those with a diameter of 80 to 125 nm. The qualitative analysis of EDS confirmed the chemical composition of the material. Practical implications: Nanoparticles (NPs) has been receiving an incrementally increasing interest within biomedical fields researchers. Nanoparticles properties (physical, chemical, mechanical, optical, electrical, magnetic, etc.) are different from the properties of their counterparts with a larger particle size. Originality/value: The nanoparticles were prepared using sol-gel method which allows the particle size to be controlled in a simple way.


1983 ◽  
Vol 56 (3) ◽  
pp. 664-676 ◽  
Author(s):  
A. D. T. Gorton ◽  
T. D. Pendle

Abstract It is obvious that there are a wide variety of experimental techniques available for the examination of the particle size in polymer latices. Some of these are well-established, such as the electron microscope, while others, such as chromato-graphic and photon correlation methods, are relatively new. Some systems are used for routine investigations of particle size distribution while others appear to be largely academic. Different methods yield diverse information with regard to the particles, and some are plainly unsuitable for latices with marked polydispersity. In order to summarize the various methods and the information they supply, Table I has been provided. This is an attempt to show, in a simplified manner, the chief features of the various techniques described above. It is hoped that this will be of value both to those established in this field and those beginning to lake an interest in the particle size of polymer latices.


1953 ◽  
Vol 26 (2) ◽  
pp. 441-446
Author(s):  
M. van den Tempel

Abstract The particle size distribution of the rubber globules in Hevea latex has been studied by means of electron microscopy. Most of the particles, even in concentrated latex, are less than 0.2 micron in diameter and are, consequently, not visible in the light microscope. These small particles have considerable influence on the specific interface, but they contain only a few per cent of the rubber present.


2009 ◽  
Vol 1213 ◽  
Author(s):  
Iliana Medina-Ramirez ◽  
Xu-Bin Pan ◽  
Sajid Bashir ◽  
Jingbo Louise Liu

AbstractPlatinum (Pt) is the most efficient and highly utilized electrocatalsyt; however its high cost hinders its widespread use as a stand-alone catalyst. To remedy this problem, a nickel (Ni) encapsulated by Pt (NiⓔPt) nanocatalyst was fabricated using a cost-effective green colloidal method. The NiⓔPt nanoparticles (NPs) were then characterized using transmission electron microscope (TEM) equipped with X-ray energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRD) to determine the particle size distribution, morphology, elemental composition, and crystalline phase structure. The surface energetic was also measured using ZetaPALS™ to identify the stability of the colloidal suspension.


Sign in / Sign up

Export Citation Format

Share Document