A Micrurgical Method for Preparation of Chromosomes for Electron Microscopy

Author(s):  
Godfrey C. Hoskins

Mammalian cells on coverslips in vitro are used during logarithmic growth phase to obtain many cells in mitosis without the use of mitotic inhibitors.Two short lengths of glass tubing attached by beeswax to a standard microscope slide provide support for the coverslip. The coverslip is placed cell side down to form a chamber with open ends for admission of microneedles and for changing the fluid environment of the cells. This open ended chamber is then filled with a physiologic salt solution such as Hanks or a growth medium such as Eagles.Microneedles governed by deFonbrune micromanipulators are admitted through the open ends of the chamber. A cell in metaphase is located, picked up by microneedle, and carried to a clear area on the coverslip (Fig. 1). The second microneedle may hold the cell while the first is moved sidewise to create an incision in the cell membrane through which the mitotic apparatus may egress.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jorge A. Arias-del-Angel ◽  
Jesús Santana-Solano ◽  
Moisés Santillán ◽  
Rebeca G. Manning-Cela

Abstract Numerous works have demonstrated that trypanosomatid motility is relevant for parasite replication and sensitivity. Nonetheless, although some findings indirectly suggest that motility also plays an important role during infection, this has not been extensively investigated. This work is aimed at partially filling this void for the case of Trypanosoma cruzi. After recording swimming T. cruzi trypomastigotes (CL Brener strain) and recovering their individual trajectories, we statistically analyzed parasite motility patterns. We did this with parasites that swim alone or above monolayer cultures of different cell lines. Our results indicate that T. cruzi trypomastigotes change their motility patterns when they are in the presence of mammalian cells, in a cell-line dependent manner. We further performed infection experiments in which each of the mammalian cell cultures were incubated for 2 h together with trypomastigotes, and measured the corresponding invasion efficiency. Not only this parameter varied from cell line to cell line, but it resulted to be positively correlated with the corresponding intensity of the motility pattern changes. Together, these results suggest that T. cruzi trypomastigotes are capable of sensing the presence of mammalian cells and of changing their motility patterns accordingly, and that this might increase their invasion efficiency.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Giovanni Cardone ◽  
Adam L. Moyer ◽  
Naiqian Cheng ◽  
Cynthia D. Thompson ◽  
Israel Dvoretzky ◽  
...  

ABSTRACTPapillomaviruses are a family of nonenveloped DNA viruses that infect the skin or mucosa of their vertebrate hosts. The viral life cycle is closely tied to the differentiation of infected keratinocytes. Papillomavirus virions are released into the environment through a process known as desquamation, in which keratinocytes lose structural integrity prior to being shed from the surface of the skin. During this process, virions are exposed to an increasingly oxidative environment, leading to their stabilization through the formation of disulfide cross-links between neighboring molecules of the major capsid protein, L1. We used time-lapse cryo-electron microscopy and image analysis to study the maturation of HPV16 capsids assembled in mammalian cells and exposed to an oxidizing environment after cell lysis. Initially, the virion is a loosely connected procapsid that, underin vitroconditions, condenses over several hours into the more familiar 60-nm-diameter papillomavirus capsid. In this process, the procapsid shrinks by ~5% in diameter, its pentameric capsomers change in structure (most markedly in the axial region), and the interaction surfaces between adjacent capsomers are consolidated. A C175S mutant that cannot achieve normal inter-L1 disulfide cross-links shows maturation-related shrinkage but does not achieve the fully condensed 60-nm form. Pseudoatomic modeling based on a 9-Å resolution reconstruction of fully mature capsids revealed C-terminal disulfide-stabilized “suspended bridges” that form intercapsomeric cross-links. The data suggest a model in which procapsids exist in a range of dynamic intermediates that can be locked into increasingly mature configurations by disulfide cross-linking, possibly through a Brownian ratchet mechanism.IMPORTANCEHuman papillomaviruses (HPVs) cause nearly all cases of cervical cancer, a major fraction of cancers of the penis, vagina/vulva, anus, and tonsils, and genital and nongenital warts. HPV types associated with a high risk of cancer, such as HPV16, are generally transmitted via sexual contact. The nonenveloped virion of HPVs shows a high degree of stability, allowing the virus to persist in an infectious form in environmental fomites. In this study, we used cryo-electron microscopy to elucidate the structure of the HPV16 capsid at different stages of maturation. The fully mature capsid adopts a rigid, highly regular structure stabilized by intermolecular disulfide bonds. The availability of a pseudoatomic model of the fully mature HPV16 virion should help guide understanding of antibody responses elicited by HPV capsid-based vaccines.


1993 ◽  
Vol 104 (3) ◽  
pp. 873-881
Author(s):  
F.A. Suprynowicz

Inactivation of the cyclin-p34cdc2 protein kinase complex is a major requirement for anaphase onset and exit from mitosis. To facilitate identification of specific molecules that regulate this event in mammalian cells, I have developed a cell-free assay in which cdc2 kinase associated with a chromosomal fraction from metaphase tissue culture cells is inactivated by a cell-cycle-regulated cytosolic system. In vitro kinase inactivation requires ATP, Mg2+ and the dephosphorylation of one or more sites in the chromosomal fraction by protein phosphatase 1 and/or 2A. Cyclin B is destroyed during inactivation, while the level of p34cdc2 remains constant. Ammonium sulfate fractionation resolves the cytosolic inactivating system into at least two distinct protein components that are both required for inactivation and are differentially regulated during mitosis.


Development ◽  
1987 ◽  
Vol 100 (1) ◽  
pp. 147-161 ◽  
Author(s):  
D.L. Shi ◽  
M. Delarue ◽  
T. Darribere ◽  
J.F. Riou ◽  
J.C. Boucaut

The capacity for extension of the dorsal marginal zone (DMZ) in Pleurodeles waltl gastrulae was studied by scanning electron microscopy and grafting experiments. At the onset of gastrulation, the cells of the animal pole (AP) undergo important changes in shape and form a single layer. As gastrulation proceeds, the arrangement of cells also changes in the noninvoluted DMZ: radial intercalation leads to a single layer of cells. Grafting experiments involving either AP or DMZ explants were performed using a cell lineage tracer. When rotated 90 degrees or 180 degrees, grafted DMZ explants were able to involute normally and there was extension according to the animal-vegetal axis of the host. In contrast, neither single nor bilayered explants from AP involutes completely, and neither extends when grafted in place of the DMZ. Furthermore, when inside of the host, these AP grafts curl up and inhibit the closure of the blastopore. Once transplanted to the AP region, the DMZ showed no obvious autonomous extension. DMZs cultured in vitro showed little extension and this only from the late gastrula stage onward. Removal of blastocoel roof blocked involution to a varied extent, depending on the developmental stage of the embryos. From these results, it is argued that differences could well exist in the mechanism of gastrulation between anuran and urodele embryos. That migrating mesodermal cells play a major role in urodele gastrulation is discussed.


1993 ◽  
Vol 123 (3) ◽  
pp. 681-689 ◽  
Author(s):  
B D Wright ◽  
M Terasaki ◽  
J M Scholey

Previous studies suggest that kinesin heavy chain (KHC) is associated with ER-derived membranes that accumulate in the mitotic apparatus in cells of early sea urchin embryos (Wright, B. D., J. H. Henson, K. P. Wedaman, P. J. Willy, J. N. Morand, and J. M. Scholey. 1991. J. Cell Biol. 113:817-833). Here, we report that the microinjection of KHC-specific antibodies into these cells has no effect on mitosis or ER membrane organization, even though one such antibody, SUK4, blocks kinesin-driven motility in vitro and in mammalian cells. Microinjected SUK4 was localized to early mitotic figures, suggesting that it is able to access kinesin in spindles. In contrast to KHC-specific antibodies, two antibodies that react with kinesin-like proteins (KLPs), namely CHO1 and HD, disrupted mitosis and prevented subsequent cell division. CHO1 is thought to exert this effect by blocking the activity of a 110-kD KLP. The relevant target of HD, which was raised against the KHC motor domain, is unknown; HD may disrupt mitosis by interfering with an essential spindle KLP but not with KHC itself, as preabsorption of HD with KHC did not alter its ability to block mitosis. These data indicate that some KLPs have essential mitotic functions in early sea urchin embryos but KHC itself does not.


1963 ◽  
Vol 9 (2) ◽  
pp. 179-186
Author(s):  
Wendall E. Allen ◽  
Ilda McVeigh

Ten strains of naturally penicillin-resistant Staphylococcus aureus (obtained from patients), two in vitro derived resistant strains, and two sensitive strains, were grown at 37 C in Antibiotic Assay broth, and viable cell determinations were made at intervals. From these data, growth curves were plotted for each of the strains. The curves for the naturally penicillin-resistant and the sensitive strains are very similar. Little, if any, lag in growth of these strains occurred on transfer from maximum stationary-phase cultures to fresh medium. They grew at approximately the same rate during the logarithmic growth phase, which lasted for 3 to 4 hours; during the maximum stationary phase, about the same number of cells was present per milliliter in cultures of each of these strains. In contrast, the in vitro derived resistant strains underwent a lag of 2 to 6 hours on transfer to fresh medium and grew at a slower rate during the logarithmic growth phase. However, during the maximum stationary phase, which occurred after an incubation period of 24 to 32 hours, the cell titers were approximately the same as those of the naturally resistant and the sensitive strains. When grown in competition with either of the sensitive strains in Antibiotic Assay broth in the absence of penicillin, one of the naturally resistant strains persisted for 14 successive subcultures without any apparent change in ability to tolerate the antibiotic.


1998 ◽  
Vol 72 (7) ◽  
pp. 6199-6206 ◽  
Author(s):  
Karen E. Reed ◽  
Alexander E. Gorbalenya ◽  
Charles M. Rice

ABSTRACT Phosphorylation of the expressed NS5A protein of hepatitis C virus (HCV), a member of the Hepacivirus genus of the familyFlaviviridae, has been demonstrated in mammalian cells and in a cell-free assay by an associated kinase activity. In this report, phosphorylation is also shown for the NS5A and NS5 proteins, respectively, of bovine viral diarrhea virus (BVDV) and yellow fever virus (YF), members of the other two established genera in this family. Phosphorylation of BVDV NS5A and YF NS5 was observed in infected cells, transient expression experiments, and a cell-free assay similar to the one developed for HCV NS5A. Phosphoamino acid analyses indicated that all three proteins were phosphorylated by serine/threonine kinases. Similarities in the properties of BVDV NS5A, YF NS5, and HCV NS5A phosphorylation in vitro further suggested that closely related kinases or the same kinase may phosphorylate these viral proteins. Conservation of this trait among three quite distantly related viruses representing three separate genera suggests that phosphorylation of the NS5A/NS5 proteins or their association with cellular kinases may play an important role in the flavivirus life cycle.


1967 ◽  
Vol 34 (2) ◽  
pp. 535-548 ◽  
Author(s):  
G. G. Borisy ◽  
E. W. Taylor

Colchicine forms a complex in vivo with a protein present in fertilized or unfertilized sea urchin eggs; similar binding was obtained in vitro with the soluble fraction from egg homogenates. Kinetic parameters and binding equilibrium constant were essentially the same in vivo and in vitro. The binding site protein was shown to have a sedimentation constant of 6S by zone centrifugation. The protein was present in extracts of the isolated mitotic apparatus at a concentration which was several times higher than in whole-egg homogenates. It was extracted from the mitotic apparatus at low ionic strength under conditions which lead to the disappearance of microtubules. No binding could be detected to the 27S protein, previously described by Kane, which is a major protein component of the isolated mitotic apparatus. The properties of the colchicine-bindinG protein, (binding constant, sedimentation constant, Sephadex elution volume) are similar to those obtained with the protein from mammalian cells, sea-urchin sperm tails, and brain tissue, and thus support the conclusion that the protein is a subunit of microtubules.


1971 ◽  
Vol 17 (1) ◽  
pp. 1-6 ◽  
Author(s):  
D. E. Mahony ◽  
M. E. Butler

Thirty-three strains of Clostridium perfringens were screened for bacteriocin production. Four bacteriocin-producing strains were detected by plating the supernatant fluids of these cultures on all available strains of C. perfringens seeded in semisolid agar and noting zones of bacterial inhibition after subsequent incubation. The spectrum of sensitive strains differed for each bacteriocin as did the degree of bacterial sensitivity to each bacteriocin.One bacteriocin and one indicator strain were chosen for further study. This bacteriocin, which was spontaneously produced during the logarithmic growth phase of the bacteriocinogenic strain, was not inducible with ultraviolet light but was sensitive to heat and trypsin. Adsorption of bacteriocin to the indicator strain was not detected and electron microscopy did not reveal any particulate substance associated with bacteriocin activity. The degree of bacterial inhibition was dependent on the titer of the bacteriocin used, and the age of the indicator culture appeared to influence its relative response to bacteriocin treatment.


1965 ◽  
Vol 26 (2) ◽  
pp. 539-553 ◽  
Author(s):  
T. C. Hsu ◽  
Frances E. Arrighi ◽  
Robert R. Klevecz ◽  
B. R. Brinkley

In a number of mammalian cell strains nucleoli persisted through mitosis. This phenomenon was especially pronounced in several cell lines derived from Chinese hamster tissues. All the methods employed, including radioautography with tritiated uridine, cytochemical stains (methyl green-pyronin and azure B), fluorescent microscopy (coriphosphine O), ribonuclease digestion, and electron microscopy, demonstrated that the bodies identified as persistent nucleoli in the mitotic stages had the same characteristics as did the nucleoli in the interphase. Persistent nucleoli may attach to the chromosomes or may be free in the cytoplasm. In cells where no persistent nucleoli as such were noted, nucleolar material was observed to attach to the chromosomes in shapeless masses which moved with the chromosomes during anaphase. At least a portion of the nucleolar material was included in the daughter nuclei, presumably for immediate use for protein synthesis after cell division.


Sign in / Sign up

Export Citation Format

Share Document