Lattice Images of Non-Integer Planes in Gold

Author(s):  
W. R. Bottoms ◽  
L. L. Ban

A common growth habit for gold microcrystals is a thin (111) platelet of hexagonal or trigonal symmetry. It has been shown that such microcrystals contain coherent faults in the ABCABC stacking sequence giving rise to non-zero structure factors for lattice planes of index 1/3(422). Transmission electron diffraction patterns from these crystals such as shown in Figure 2 confirm the existence of this non-zero structure factor by exhibiting reflections whose spacing and orientation correspond to lattice planes of the type 1/3(422). The diffraction pattern in Figure 2 has been superimposed on the polycrystalline ring pattern of gold for reference and the spacings of the inner-most spots is equal to the 2.497Å of the 1/3(422) planes to within the experimental error. Additional confirmation of the indexing of these spots has been obtained by electron diffraction at various angles of tilt.Phase contrast lattice images of the non-integer planes shown in Figure 1 were obtained with axial illumination of the sample by defocusing the objective lens of a Philips EM-300 electron microscope.

Author(s):  
E.D. Boyes ◽  
P.L. Gai ◽  
A.J. Skarnulis

The models that are suggested to describe precipitation reactions and phase transformations are almost always on the atomic scale, but the experimental techniques that can be used to examine the phenomena often either integrate the information from many events or operate at somewhat lower resolution. However, phase-contrast lattice imaging and possibly weak beam (Yoshida et al. 1976) techniques of transmission electron microscopy and field-ion microscopy (FIM) (e.g. Boyes et al. 1975 and 1977) can be useful. In principle the images can be interpreted to yield microanalytical data about individual planes or layers of atoms.Images of (200) lattice planes, or more correctly fringes, have been produced from a rolled high purity Aluminium 4.3% Copper alloy containing GP2 or θ" zones. The polycrystalline material is used since the composition is more representative of the applications of this alloy. It was more difficult to produce images of this material than, for example of the visual gold test specimens: it is suggested that this may be due to the increased inelastic cross-sections.


Author(s):  
William Krakow

An electronic device has been constructed which manipulates the primary beam in the conventional transmission microscope to illuminate a specimen under a variety of virtual condenser aperture conditions. The device uses the existing tilt coils of the microscope, and modulates the D.C. signals to both x and y tilt directions simultaneously with various waveforms to produce Lissajous figures in the back-focal plane of the objective lens. Electron diffraction patterns can be recorded which reflect the manner in which the direct beam is tilted during exposure of a micrograph. The device has been utilized mainly for the hollow cone imaging mode where the device provides a microscope transfer function without zeros in all spatial directions and has produced high resolution images which are also free from the effect of chromatic aberration. A standard second condenser aperture is employed and the width of the cone annulus is readily controlled by defocusing the second condenser lens.


Author(s):  
J.R. Parsons ◽  
C.W. Hoelke

The direct imaging of a crystal lattice has intrigued electron microscopists for many years. What is of interest, of course, is the way in which defects perturb their atomic regularity. There are problems, however, when one wishes to relate aperiodic image features to structural aspects of crystalline defects. If the defect is inclined to the foil plane and if, as is the case with present 100 kV transmission electron microscopes, the objective lens is not perfect, then terminating fringes and fringe bending seen in the image cannot be related in a simple way to lattice plane geometry in the specimen (1).The purpose of the present work was to devise an experimental test which could be used to confirm, or not, the existence of a one-to-one correspondence between lattice image and specimen structure over the desired range of specimen spacings. Through a study of computed images the following test emerged.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
R. H. Geiss

The theory and practical limitations of micro area scanning transmission electron diffraction (MASTED) will be presented. It has been demonstrated that MASTED patterns of metallic thin films from areas as small as 30 Åin diameter may be obtained with the standard STEM unit available for the Philips 301 TEM. The key to the successful application of MASTED to very small area diffraction is the proper use of the electron optics of the STEM unit. First the objective lens current must be adjusted such that the image of the C2 aperture is quasi-stationary under the action of the rocking beam (obtained with 40-80-160 SEM settings of the P301). Second, the sample must be elevated to coincide with the C2 aperture image and its image also be quasi-stationary. This sample height adjustment must be entirely mechanical after the objective lens current has been fixed in the first step.


Author(s):  
John F. Mansfield

One of the most important advancements of the transmission electron microscopy (TEM) in recent years has been the development of the analytical electron microscope (AEM). The microanalytical capabilities of AEMs are based on the three major techniques that have been refined in the last decade or so, namely, Convergent Beam Electron Diffraction (CBED), X-ray Energy Dispersive Spectroscopy (XEDS) and Electron Energy Loss Spectroscopy (EELS). Each of these techniques can yield information on the specimen under study that is not obtainable by any other means. However, it is when they are used in concert that they are most powerful. The application of CBED in materials science is not restricted to microanalysis. However, this is the area where it is most frequently employed. It is used specifically to the identification of the lattice-type, point and space group of phases present within a sample. The addition of chemical/elemental information from XEDS or EELS spectra to the diffraction data usually allows unique identification of a phase.


Author(s):  
Pierre Moine

Qualitatively, amorphous structures can be easily revealed and differentiated from crystalline phases by their Transmission Electron Microscopy (TEM) images and their diffraction patterns (fig.1 and 2) but, for quantitative structural information, electron diffraction pattern intensity analyses are necessary. The parameters describing the structure of an amorphous specimen have been introduced in the context of scattering experiments which have been, so far, the most used techniques to obtain structural information in the form of statistical averages. When only small amorphous volumes (< 1/μm in size or thickness) are available, the much higher scattering of electrons (compared to neutrons or x rays) makes, despite its drawbacks, electron diffraction extremely valuable and often the only feasible technique.In a diffraction experiment, the intensity IN (Q) of a radiation, elastically scattered by N atoms of a sample, is measured and related to the atomic structure, using the fundamental relation (Born approximation) : IN(Q) = |FT[U(r)]|.


Author(s):  
Jan-Olov Bovin ◽  
Osamu Terasaki ◽  
Jan-Olle Malm ◽  
Sven Lidin ◽  
Sten Andersson

High resolution transmission electron microscopy (HRTEM) is playing an important role in identifying the new icosahedral phases. The selected area diffraction patterns of quasi crystals, recorded with an aperture of the radius of many thousands of Ångströms, consist of dense arrays of well defined sharp spots with five fold dilatation symmetry which makes the interpretation of the diffraction process and the resulting images different from those invoked for usual crystals. The atomic structure of the quasi crystals is not established even if several models are proposed. The correct structure model must of course explain the electron diffraction patterns with 5-, 3- and 2-fold symmetry for the phases but it is also important that the HRTEM images of the alloys match the computer simulated images from the model. We have studied quasi crystals of the alloy Al65Cu20Fe15. The electron microscopes used to obtain high resolution electro micrographs and electron diffraction patterns (EDP) were a (S)TEM JEM-2000FX equipped with EDS and PEELS showing a structural resolution of 2.7 Å and a IVEM JEM-4000EX with a UHP40 high resolution pole piece operated at 400 kV and with a structural resolution of 1.6 Å. This microscope is used with a Gatan 622 TV system with an image intensifier, coupled to a YAG screen. It was found that the crystals of the quasi crystalline materials here investigated were more sensitive to beam damage using 400 kV as electron accelerating voltage than when using 200 kV. Low dose techniques were therefore applied to avoid damage of the structure.


2010 ◽  
Vol 66 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Mingrun Li ◽  
Junliang Sun ◽  
Peter Oleynikov ◽  
Sven Hovmöller ◽  
Xiaodong Zou ◽  
...  

The structure of a complicated quasicrystal approximant ∊16 was predicted from a known and related quasicrystal approximant ∊6 by the strong-reflections approach. Electron-diffraction studies show that in reciprocal space, the positions of the strongest reflections and their intensity distributions are similar for both approximants. By applying the strong-reflections approach, the structure factors of ∊16 were deduced from those of the known ∊6 structure. Owing to the different space groups of the two structures, a shift of the phase origin had to be applied in order to obtain the phases of ∊16. An electron-density map of ∊16 was calculated by inverse Fourier transformation of the structure factors of the 256 strongest reflections. Similar to that of ∊6, the predicted structure of ∊16 contains eight layers in each unit cell, stacked along the b axis. Along the b axis, ∊16 is built by banana-shaped tiles and pentagonal tiles; this structure is confirmed by high-resolution transmission electron microscopy (HRTEM). The simulated precession electron-diffraction (PED) patterns from the structure model are in good agreement with the experimental ones. ∊16 with 153 unique atoms in the unit cell is the most complicated approximant structure ever solved or predicted.


Sign in / Sign up

Export Citation Format

Share Document