Cilia Microtubule Deformation: A Preliminary Report

Author(s):  
R. Redding

Various hypotheses for the mechanism of ciliar motility either purport or oppose the concept of microtubule contraction. Recent literature supporting the Sliding Microtubule Model has established that microtubule doublets move relative to one another during the process of bending. Satir (1968) concluded that there is no change of length in the doublets during bending of cilia. He based his conclusion upon: (1) circular relationships and (2) a two dimensional configuration of the microtubules. Accuracy of the circular relationships is dependent upon how close the approximation is to the true curvilinear relationship expressed by a ciliutn. Cross sectional rotation during bending may limit the validity of two dimensional analysis. This communication is a preliminary report on a new, three dimensional approach for determining the deformational characteristics of elongation or shortening of microtubules as they may be expressed in cilia.

Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 347 ◽  
Author(s):  
Paul Coseo ◽  
Larissa Larsen

Urban heat islands (UHI) increase summer temperatures and can threaten human well-being during extreme heat events. Since urbanization plays a key role in UHI development, accurate quantification of land cover types is critical to their identification. This study examines how quantifying land cover types using both two- and three-dimensional approaches to land cover quantification affects an UHI model’s explanatory power. Two-dimensional approaches treat tree canopies as a land cover, whereas three-dimensional approaches document the land cover areas obscured under tree canopies. We compare how accurately the two approaches explain elevated air temperatures in Chicago, Illinois. Our results show on average 14.1% of impervious surface areas went undocumented using a two-dimensional approach. The most common concealed impervious surfaces were sidewalks, driveways, and parking lots (+6.2%), followed by roads (+6.1%). Yet, the three-dimensional approach did not improve the explanatory power of a UHI model substantially. At 2 a.m., the adjusted R2 increased from 0.64 for a two-dimensional analysis to 0.68 for a three-dimensional analysis. We found that the less time consuming two-dimensional quantification of land covers was sufficient to predict neighborhood UHIs. As climate change exacerbates UHI, more cities will map urban hotspots and this research increases our understanding of alternative approaches.


1998 ◽  
Vol 19 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Irene McClay ◽  
Kurt Manal

The advantage of a three-dimensional over a two-dimensional approach to rearfoot analysis has been questioned in the past. The purpose of this study was to examine differences in typical rearfoot variables obtained using a two-dimensional analysis compared with a three-dimensional approach. In addition, the influence of foot placement angle on these differences was assessed. Two- and three-dimensional rearfoot kinematics were collected from 18 recreational runners. Two-dimensional values for eversion at toe-off and time to peak eversion were found to be significantly different from the three-dimensional results. Differences between two-dimensional and three-dimensional variables were magnified with increased toe-out. Differences between eversion values were found to be minimal when the foot was abducted between 7 and 10°. The premise that excessive pronators have more pronounced toe-out was not supported by this study. Results suggest that caution should be exercised when assessing two-dimensional rearfoot motion in subjects with excessive toe-out.


1998 ◽  
Vol 10 (1-3) ◽  
pp. 100-108 ◽  
Author(s):  
Alicia Colson ◽  
Ross Parry

This article argues that the analysis of a threedimensional image demanded a three-dimensional approach. The authors realise that discussions of images and image processing inveterately conceptualise representation as being flat, static, and finite. The authors recognise the need for a fresh acuteness to three-dimensionality as a meaningful – although problematic – element of visual sources. Two dramatically different examples are used to expose the shortcomings of an ingrained two-dimensional approach and to facilitate a demonstration of how modern (digital) techniques could sanction new historical/anthropological perspectives on subjects that have become all too familiar. Each example could not be more different in their temporal and geographical location, their cultural resonance, and their historiography. However, in both these visual spectacles meaning is polysemic. It is dependent upon the viewer's spatial relationship to the artifice as well as the spirito-intellectual viewer within the community. The authors postulate that the multi- faceted and multi-layered arrangement of meaning in a complex image could be assessed by working beyond the limitations of the two-dimensional methodological paradigm and by using methods and media that accommodated this type of interconnectivity and representation.


1983 ◽  
Vol 105 (3) ◽  
pp. 406-412 ◽  
Author(s):  
Kyung Woong Kim ◽  
Masato Tanaka ◽  
Yukio Hori

The thermohydrodynamic performance of the bearing is analyzed, taking into account the three-dimensional variation of lubricant viscosity and density. The effect of pivot position and operating and environmental conditions on the performance is studied. The present analysis is compared with the isoviscous or the two-dimensional analysis, and is found to predict the bearing performance more accurately.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lucas M. Ritschl ◽  
Paul Kilbertus ◽  
Florian D. Grill ◽  
Matthias Schwarz ◽  
Jochen Weitz ◽  
...  

BackgroundMandibular reconstruction is conventionally performed freehand, CAD/CAM-assisted, or by using partially adjustable resection aids. CAD/CAM-assisted reconstructions are usually done in cooperation with osteosynthesis manufacturers, which entails additional costs and longer lead time. The purpose of this study is to analyze an in-house, open-source software-based solution for virtual planning.Methods and MaterialsAll consecutive cases between January 2019 and April 2021 that underwent in-house, software-based (Blender) mandibular reconstruction with a free fibula flap (FFF) were included in this cross-sectional study. The pre- and postoperative Digital Imaging and Com munications in Medicine (DICOM) data were converted to standard tessellation language (STL) files. In addition to documenting general information (sex, age, indication for surgery, extent of resection, number of segments, duration of surgery, and ischemia time), conventional measurements and three-dimensional analysis methods (root mean square error [RMSE], mean surface distance [MSD], and Hausdorff distance [HD]) were used.ResultsTwenty consecutive cases were enrolled. Three-dimensional analysis of preoperative and virtually planned neomandibula models was associated with a median RMSE of 1.4 (0.4–7.2), MSD of 0.3 (-0.1–2.9), and HD of 0.7 (0.1–3.1). Three-dimensional comparison of preoperative and postoperative models showed a median RMSE of 2.2 (1.5–11.1), MSD of 0.5 (-0.6–6.1), and HD of 1.5 (1.1–6.5) and the differences were significantly different for RMSE (p < 0.001) and HD (p < 0.001). The difference was not significantly different for MSD (p = 0.554). Three-dimensional analysis of virtual and postoperative models had a median RMSE of 2.3 (1.3–10.7), MSD of -0.1 (-1.0–5.6), and HD of 1.7 (0.1–5.9).ConclusionsOpen-source software-based in-house planning is a feasible, inexpensive, and fast method that enables accurate reconstructions. Additionally, it is excellent for teaching purposes.


2018 ◽  
Vol 21 (3) ◽  
pp. 134-137
Author(s):  
Yong Cheol Jun ◽  
Young Lae Moon ◽  
Moustafa I Elsayed ◽  
Jae Hwan Lim ◽  
Dong Hyuk Cha

BACKGROUND: In a previous study undertaken to quantify capsular volume in rotator cuff interval or axillary pouch, significant differences were found between controls and patients with instability. However, the results obtained were derived from two-dimensional cross sectional areas. In our study, we sought correlation between three-dimensional (3D) capsular volumes, as measured by magnetic resonance arthrography (MRA), and multidirectional instability (MDI) of the shoulder.METHODS: The MRAs of 21 patients with MDI of the shoulder and 16 control cases with no instability were retrospectively reviewed. Capsular areas determined by MRA were translated into 3D volumes using 3D software Mimics ver. 16 (Materilise, Leuven, Belgium), and glenoid surface area was measured in axial and coronal MRA views. Then, the ratio between capsular volume and glenoid surface area was calculated, and evaluated with control group.RESULTS: The ratio between 3D capsular volume and glenoid surface area was significantly increased in the MDI group (3.59 ± 0.83 cm³/cm²) compared to the control group (2.53 ± 0.62 cm³/cm²) (p < 0.01).CONCLUSIONS: From these results, we could support that capsular volume enlargement play an important role in MDI of the shoulder using volume measurement.


Author(s):  
A. R. Wadia ◽  
P. N. Szucs ◽  
K. L. Gundy-Burlet

Large circumferential varying pressure levels produced by aerodynamic flow interactions between downstream stators and struts present a potential noise and stability margin liability in a compression component. These interactions are presently controlled by tailoring the camber and/or stagger angles of vanes neighboring the fan frame struts. This paper reports on the design and testing of a unique set of swept and leaned fan outlet guide vanes (OGVs) that do not require this local tailoring even though the OGVs are closely coupled with the fan frame struts and splitter to reduce engine length. The swept and leaned OGVs not only reduce core-duct diffusion, but they also reduce the potential flow interaction between the stator and the strut relative to that produced by conventional radial OGVs. First, the design of the outlet guide vanes using a single bladerow three-dimensional viscous flow analysis is outlined. Next, a two-dimensional potential flow analysis was used for the coupled OGV-frame system to obtain a circumferentially non-uniform stator stagger angle distribution to further reduce the upstream static pressure disturbance. Recognizing the limitations of the two-dimensional potential flow analysis for this highly three-dimensional set of leaned OGVs, as a final evaluation of the OGV-strut system design, a full three-dimensional viscous analysis of a periodic circumferential sector of the OGVs, including the fan frame struts and splitter, was performed. The computer model was derived from a NASA-developed code used in simulating the flow field for external aerodynamic applications with complex geometries. The three-dimensional coupled OGV-frame analysis included the uniformly-staggered OGVs configuration and the variably-staggered OGVs configuration determined by the two-dimensional potential flow analysis. Contrary to the two-dimensional calculations, the three-dimensional analysis revealed significant flow problems with the variably-staggered OGVs configuration and showed less upstream flow non-uniformity with the uniformly-staggered OGVs configuration. The flow redistribution in both the radial and tangential directions, captured fully only in the three-dimensional analysis, was identified as the prime contributor to the lower flow non-uniformity with the uniformly-staggered OGVs configuration. The coupled three-dimensional analysis was also used to validate the design at off-design conditions. Engine test performance and stability measurements with both uniformly- and variably-staggered OGVs configurations with and without the presence of inlet distortion confirmed the conclusions from the three-dimensional analysis.


1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


Sign in / Sign up

Export Citation Format

Share Document