Studies on the Fungal Pathogen of Dutch Elm Disease

Author(s):  
H.M. Mazzone ◽  
G. Wray ◽  
R. Zerillo

The fungal pathogen of the Dutch elm disease (DED), Ceratocystis ulmi (Buisman) C. Moreau, has eluded effective control since its introduction in the United States more than sixty years ago. Our studies on DED include establishing biological control agents against C. ulmi. In this report we describe the inhibitory action of the antibiotic polymyxin B on the causal agent of DED.In screening a number of antibiotics against C. ulmi, we observed that filter paper discs containing 300 units (U) of polymyxin B (Difco Laboratories) per disc, produced zones of inhibition to the fungus grown on potato dextrose agar or Sabouraud agar plates (100mm x 15mm), Fig. 1a. Total inhibition of fungal growth on a plate occurred when agar overlays containing fungus and antibiotic (polymyxin B sulfate, ICN Pharmaceuticals, Inc.) were poured on the underlying agar growth medium. The agar overlays consisted of the following: 4.5 ml of 0.7% agar, 0.5 ml of fungus (control plate); 4.0 ml of 0.7% agar, 0.5 ml of fungus, 0.5 ml of polymyxin B sulfate (77,700 U). Fig. 1, b and c, compares a control plate and polymyxin plate after seven days.

2018 ◽  
Vol 7 (2) ◽  
pp. 84-91
Author(s):  
Adil Laaziz ◽  
Souad Qjidaa ◽  
Yousra El Hammoudi ◽  
Abdelouahed Hajjaji ◽  
Amina Bouseta

The aim of this study was to evaluate the effect of three fungicides azoxystrobin (Ortiva), hexaconazole (Hexa) and pyrimethanil (Pyrus) for their ability to inhibit the radial growth and ochratoxin A (OTA) production by five ochratoxigenic strains of Aspergillus carbonarius and A. niger previously iso-lated from Moroccan grapes. Our results showed that, the addition of the fungicides to the Czapek Yeast Autolysate agar culture medium reduced the growth of the ochratoxigenic strains. Pyrimethanil caused total inhibition of spore germination and growth of the five strains, for all dose tested. Where-as hexaconazole totally inhibited the growth of 4 strains and gave growth for the MUCL 49227 strain (2.67 mm/day) at sublethal concentration. The reduction in radial growth was less marked for azoxystrobin, with growth rate varying between 0 and 6.37 mm/day depending on the strain and the azoxystrobin concentration. Analysis of variance showed that the effect of single factors (fungicides, concentration and strain) and their interactions on growth and OTA production were highly significant (P=0.000).These findings suggest that the use of tested fungicides have to potential for reduction in production of OTA.


Chemotherapy ◽  
2021 ◽  
pp. 1-7
Author(s):  
Carla Adriana dos Santos ◽  
Rodrigo Tavanelli Hernandes ◽  
Marcos Paulo Vieira Cunha ◽  
Filipe Onishi Nagamori ◽  
Claudia Regina Gonçalves ◽  
...  

<b><i>Background:</i></b> Uropathogenic <i>Escherichia coli</i> (UPEC) are frequent pathogens worldwide, impacting on the morbidity and economic costs associated with antimicrobial treatment. <b><i>Objectives:</i></b> We report two novel mutations associated with polymyxin-B resistance in an UPEC isolate collected in 2019. <b><i>Methods:</i></b> Isolate was submitted to antimicrobial susceptibility testing including broth microdilution for polymyxin B. Whole genome was sequenced and analyzed. <b><i>Results:</i></b> Polymyxin-B total inhibition occurred at 16 mg/L (resistant). UPEC isolate was assigned to the phylogroup D, serotype O117:H4, and Sequence Type 69. <i>mcr</i> genes were not detected, but two novel mutations in the <i>pmrA/basS</i> (A80S) and <i>pmrB/</i>basR (D149N) genes were identified. <b><i>Conclusions:</i></b> The occurrence of non-<i>mcr</i> polymyxin resistance in <i>E. coli</i> from extraintestinal infections underscores the need of a continuous surveillance of this evolving pathogen.


2014 ◽  
Vol 43 (2) ◽  
pp. 137-142 ◽  
Author(s):  
Cíntia Lima Gouveia ◽  
Isabelle Cristine Melo Freire ◽  
Maria Luísa de Alencar e Silva Leite ◽  
Rebeca Dantas Alves Figueiredo ◽  
Leopoldina de Fátima Dantas de Almeida ◽  
...  

Introduction: The effectiveness of antimicrobial solutions employed in dental prosthesis decontamination is still uncertain. Aim: To evaluate the antifungal activity of cleaners used in the decontamination of dental prostheses on the growth of Candida albicans. Material and method: The evaluated products were: Corega Tabs(r) (S1), Sodium Hypochlorite 1% (S2), Sodium Bicarbonate 1% (S3), Hydrogen Peroxide 1% (S4), Chlorhexidine Digluconate 0.12% - Periogard (r) (S5), Mouthrinse based on essential oils - Listerine(r) (S6), essential oil from Rosmarinus officinalis (rosemary) at concentrations of 1% (S7) and 2% (S8). The antifungal activity of the products was evaluated by agar diffusion technique and the determination of microbial death curve of samples of C. albicans (ATCC 90028) in concentration 1.5 × 106 CFU/mL. The tests were performed in triplicate and statistical analysis was made by ANOVA Two-Way and Tukey tests, with the confidence level of 95%. Result: The average of the zones of inhibition growth, in millimeters, obtained for the products were: 0.0 (S1), 44.7 (S2), 0.0 (S3), 21.6 (S4), 10.0 (S5), 6.1 (S6), 0.0 (S7) and 2.4 (S8). Considering the determination of microbial death curve, all products showed a statistical difference (p<0.01) from control (0.85% sodium chloride) and S3 groups. Fungal growth less than 2×104 CFU/mL and an accentuation of the microbial death curve were observed after 30 minutes, with exception for S3 and control groups. Conclusion: The studied compounds, with the exception of Sodium Bicarbonate, have antifungal effect against C. albicans, which contribute for dental prostheses hygiene.


1989 ◽  
Vol 52 (8) ◽  
pp. 595-601 ◽  
Author(s):  
EWEN C. D. TODD

Although the full economic impact of foodborne diseases has yet to be measured, preliminary studies show that the cost of illness, death, and business lost is high indeed. This impact is probably greatest in developing countries, but few facts are known. For the United States, preliminary estimates are 12.6 million cases costing $8.4 billion. These may seem excessive but other authors have postulated even higher case and dollar figures. Microbiological diseases (bacterial and viral) represent 84% of the United States' costs, with salmonellosis and staphylococcal intoxication being the most economically important diseases (annually $4.0 billion and $1.5 billion, respectively). Other costly types of illnesses are toxoplasmosis ($445 million), listeriosis ($313 million), campylobacteriosis ($156 million), trichinosis ($144 million), Clostridium perfringens enteritis ($123 million), and E. coli infections including hemorrhagic colitis ($223 million). Botulism has a high cost per case ($322,200), but its total impact is only $87 million because relatively few cases occur (270). This is because the food industry has been able to introduce effective control measures. Salmonellosis, however, is much more widespread (2.9 million cases) and affects all sectors of the food industry.


2018 ◽  
Vol 19 (4) ◽  
pp. 303-309 ◽  
Author(s):  
Keevan J. MacKenzie ◽  
Leilani G. Sumabat ◽  
Katia V. Xavier ◽  
Gary E. Vallad

Corynespora cassiicola is a highly diverse fungal pathogen that can infect more than 500 species of plants, including many economically important crops such as cotton, soybean, tomato, and cucumber. In Florida, the number one vegetable crop by market value are fresh-market tomatoes, which generate nearly half a billion dollars annually. Florida’s subtropical to tropical climate is conducive to infection and development of the target spot pathogen on tomato caused by C. cassiicola. There is no varietal resistance available for target spot of tomato, and preventative fungicide treatments are the primary method for control. In the last decade, C. cassiicola has been more frequently reported by Florida tomato growers, appearing not only more aggressive but also increasingly insensitive to various fungicides. This review brings together the most recent C. cassiicola literature, providing a history and understanding of the immense pathogen diversity and its relevance to tomato. It also provides insight into fungicide resistance development and pathogen survivability, which are important factors in providing effective control recommendations and in understanding the epidemiology of this disease, respectively.


Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 591-591 ◽  
Author(s):  
S. T. Koike ◽  
P. A. Nolan ◽  
S. A. Tjosvold ◽  
K. L. Robb

In California, hybrid statice (Misty series; Limonium bellidifolium × Limonium latifolium) is grown as a commercial cutflower crop in fields and greenhouses. In 1997, downy mildew was observed on statice plantings in both southern (San Diego County) and central (Monterey and Santa Cruz counties) parts of coastal California. Initial symptoms consisted of light green, irregularly shaped leaf spots that, after a few days, became chlorotic. As disease progressed, chlorotic spots coalesced and turned necrotic, at times resulting in extensive death of leaf tissues. Under favorable conditions, the purple to gray sporulation of the pathogen could be seen on abaxial surfaces of leaves. Conidiophores had main trunks with dichotomous branches and measured 194 to 335 μm in length (mean = 229 μm) from the base to the first branches and 7 to 8 μm across at the widest part. Branch ends were slender with curved tips that measured 5 to 8 μm long. Conidia were ovoid to globose with very short pedicels, and measured 14 to 19 μm × 14 to 17 μm. Conidial surfaces appeared slightly roughened when viewed with a scanning electron microscope. Clearing leaf sections with 10% NaOH (1) revealed the presence of yellow-brown, globose oospores that measured 31 to 47 μm. The pathogen was identified as Peronospora statices (1). Pathogenicity was demonstrated by pressing leaves with abundant sporulation against healthy leaves of test plants (Misty White) and then placing inoculated plants in a humidity chamber. After 10 to 12 days, symptoms similar to those originally observed developed on inoculated plants; after 14 to 16 days, purple fungal growth morphologically similar to the original isolates grew on leaves. Uninoculated control plants did not develop symptoms or signs of downy mildew. This is the first report of downy mildew caused by P. statices on statice in California and the rest of the United States. The disease has also been confirmed on Blue Fantasia (L. bellidifolium × L. perezii). This disease has been reported previously in Italy, The Netherlands, and the United Kingdom (1). Reference: (1) G. S. Hall et al. Eur. J. Plant Pathol. 103:471, 1997.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 909-909 ◽  
Author(s):  
M. Guo ◽  
Y. M. Pan ◽  
Z. M. Gao

Tree peony bark, a main component of Chinese traditional medicine used for alleviating fever and dissipating blood stasis, is mainly produced in Tongling, China. Recently, tree peony cultivation in this area was seriously affected by root rot, with approximately 20 to 30% disease incidence each year. The disease severely affects yield and quality of tree peony bark. During the past 2 years, we collected 56 diseased tree peony plants from Mudan and Fenghuang townships in Tongling. We found reddish brown to dark brown root rot in mature roots, especially on those with injuries. Plant samples collected were disinfected with 2% sodium hypochlorite and isolations were conducted on potato sucrose agar (PSA). Eleven isolates were obtained and all had white fluffy aerial hypha on PSA. Two types of conidia were produced; the larger, reaphook-shaped ones had three to five septa and the smaller, ellipse-shaped ones had one or no septum. The reaphook-shaped conidia were 20.15 to 37.21 × 3.98 to 5.27 μm and the ellipse-shaped conidia were 6.02 to 15.52 × 2.21 to 5.33 μm in size. Chlamydospores were produced, with two to five arranged together. Biological characteristics of the fungi indicated that the optimum temperature for the mycelial growth on PSA was 25 to 30°C and the optimum pH range was 5.5 to 7.0. The above morphological characteristics point the fungal isolates to be Fusarium solani. To confirm pathogenicity, 30 healthy 1-year-old tree peony seedling plants were grown in pots (25 cm in diameter) with sterilized soil and a conidial suspension from one isolate (FH-1, 5 × 105 conidia/ml) was used for soil inoculation. Inoculated seedlings were maintained at 28°C in a greenhouse with a 12-h photoperiod of fluorescent light. Seedlings inoculated with distilled water were used as controls. After 3 weeks, the roots were collected and rinsed with tap water. Dark brown lesions were observed in the inoculated mature roots but not in the control roots. To confirm the identity of the pathogen, F. solani strains were reisolated from the lesions and total genomic DNA was extracted with the cetyltriethylammnonium bromide method from the mycelia of the reisolated strains (1). PCR was performed using the fungal universal primers ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) and ITS5 (5′-GGAAGTAAAAGTCGTAACAAGG-3′) to amplify a DNA fragment of approximately 590 bp. The purified PCR products were sequenced (Invitrogen Co., Shanghai, China) and shared 100% sequence identity with each other. A comparison of the sequence (JQ658429.1) by the Clustal_W program (2) with those uploaded in GenBank confirmed with the fungus F. solani (100% sequence similarity to isolate S-0900 from the Great Plains of the United States; EU029589.1). To our knowledge, this is the first report of F. solani causing medical tree peony root rot in China. The existence of this pathogen in China may need to be considered for developing effective control strategies. References: (1). C. N. Stewart et al. Biotechniques 14:748, 1993. (2). J. D. Thompson et al. Nucleic Acids Res. 22:4673, 1994.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1281-1281 ◽  
Author(s):  
S. Mahadevakumar ◽  
Vandana Yadav ◽  
G. S. Tejaswini ◽  
S. N. Sandeep ◽  
G. R. Janardhana

Lemon (Citrus lemon (L.) Burm. f.) is an important fruit crop cultivated worldwide, and is grown practically in every state in India (3). During a survey conducted in 2013, a few small trees in a lemon orchard near Mysore city (Karnataka) (12°19.629′ N, 76°31.892′ E) were found affected by dieback disease. Approximately 10 to 20% of trees were affected as young shoots and branches showed progressive death from the apical region downward. Different samples were collected and diagnosed via morphological methods. The fungus was consistently isolated from the infected branches when they were surface sanitized with 1.5% NaOCl and plated on potato dextrose agar (PDA). Plates were incubated at 26 ± 2°C for 7 days at 12/12 h alternating light and dark period. Fungal colonies were whitish with pale brown stripes having an uneven margin and pycnidia were fully embedded in the culture plate. No sexual state was observed. Pycnidia were globose, dark, 158 to 320 μm in diameter, and scattered throughout the mycelial growth. Both alpha and beta conidia were present within pycnidia. Alpha conidia were single celled (5.3 to 8.7 × 2.28 to 3.96 μm) (n = 50), bigittulate, hyaline, with one end blunt and other truncated. Beta conidia (24.8 to 29.49 × 0.9 to 1.4 μm) (n = 50) were single celled, filiform, with one end rounded and the other acute and curved. Based on the morphological and cultural features, the fungal pathogen was identified as Phomopsis citri H.S. Fawc. Pathogenicity test was conducted on nine healthy 2-year-old lemon plants via foliar application of a conidial suspension (3 × 106); plants were covered with polythene bags for 6 days and maintained in the greenhouse. Sterile distilled water inoculated plants (in triplicate) served as controls and were symptomless. Development of dieback symptoms was observed after 25 days post inoculation and the fungal pathogen was re-isolated from the inoculated lemon trees. The internal transcribed spacer region (ITS) of the isolated fungal genomic DNA was amplified using universal-primer pair ITS1/ITS4 and sequenced to confirm the species-level diagnosis (4). The sequence data of the 558-bp amplicon was deposited in GenBank (Accession No. KJ477016.1) and nBLAST search showed 99% homology with Diaporthe citri (teleomorph) strain 199.39 (KC343051.1). P. citri is known for its association with melanose disease of citrus in India, the United States, and abroad. P. citri also causes stem end rot of citrus, which leads to yield loss and reduction in fruit quality (1,2). Dieback disease is of serious concern for lemon growers as it affects the overall productivity level of the tree. To the best of our knowledge, this is the first report of P. citri causing dieback of lemon in India. References: (1) I. H. Fischer et al. Sci. Agric. (Piracicaba). 66:210, 2009. (2) S. N. Mondal et al. Plant Dis. 91:387, 2007. (3) S. P. Raychaudhuri. Proc. Int. Soc. Citriculture 1:461, 1981. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


2013 ◽  
Vol 27 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Kelly A. Barnett ◽  
A. Stanley Culpepper ◽  
Alan C. York ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic for cotton growers in the Southeast and Midsouth regions of the United States. Glufosinate can control GR Palmer amaranth, and growers are transitioning to glufosinate-based systems. Palmer amaranth must be small for consistently effective control by glufosinate. Because this weed grows rapidly, growers are not always timely with applications. With widespread resistance to acetolactate synthase-inhibiting herbicides, growers have few herbicide options to mix with glufosinate to improve control of larger weeds. In a field study using a WideStrike®cotton cultivar, we evaluated fluometuron at 140 to 1,120 g ai ha−1mixed with the ammonium salt of glufosinate at 485 g ae ha−1for control of GR Palmer amaranth 13 and 26 cm tall. Standard PRE- and POST-directed herbicides were included in the systems. Glufosinate alone injured the WideStrike® cotton less than 10%. Fluometuron increased injury up to 25% but did not adversely affect yield. Glufosinate controlled 13-cm Palmer amaranth at least 90%, and there was no improvement in weed control nor a cotton yield response to fluometuron mixed with glufosinate. Palmer amaranth 26 cm tall was controlled only 59% by glufosinate. Fluometuron mixed with glufosinate increased control of the larger weeds up to 28% and there was a trend for greater yields. However, delaying applications until weeds were 26 cm reduced yield 22% relative to timely application. Our results suggest fluometuron mixed with glufosinate may be of some benefit when attempting to control large Palmer amaranth. However, mixing fluometuron with glufosinate is not a substitute for a timely glufosinate application.


Sign in / Sign up

Export Citation Format

Share Document