Immunocytochemical Identification of Tubulin Containing Paracrystals in Allogromia Reticulopods

Author(s):  
Gerald Rupp

The marine protozoan Allogromia sp, strain NF Lee extends an elaborate reticulopodial network (RN) which contains an elongate microtubule-(MT)-based cytoskeleton. The MTs are located primarily within cytoplasmic fibrils which are visible by light microscopy (LM) in highly flattened or “two dimensionalized” reticulopodia. It was shown previously that allogromiid RNs withdraw in response to hypertonic Mg2+-seawater. An ultrastructural analysis of this phenomenon indicated that large patches of paracrystalline (PC) material, composed of helical filament aggregates, form concomitant with a decrease in MT number. Similar large patches of PC aggregates are also found in juvenile Allogromia before they extend a RN, which disappear during RN formation. Finally, PC aggregates are occasionally seen near microtubules in normal untreated RNs. Thus there is circumstantial evidence to propose that PC aggregates in Allogromia represent an intermediate form of tubulin; however, more definitive biochemical or immunocytochemical data is not available.

1983 ◽  
Vol 69 (5) ◽  
pp. 423-435 ◽  
Author(s):  
Saverio Cinti ◽  
Maurizio Ferretti ◽  
Silvana Amati ◽  
Giancarlo Balercia ◽  
Adalberto Vecchi ◽  
...  

The authors report the results obtained from the application of electron microscopy techniques to the cytology of fine-needle-aspirated samples of neoplastic lesions from various body sites. These results show that the tissue structure, which is usually lost during the squashing necessary for light microscopy cytology, is preserved when the samples are processed for ultrastructural analysis. Electron microscopy also allows a highly detailed study of the cell's inner structures. Thus, when this technique is applied, fine needle-aspirated samples can be regarded as actual microbiopsies. However, because of the high cost of ultrastructural techniques, we suggest that actual analysis be performed only in selected cases, whereas fixation and inclusion for electron microscopy could be done routinely.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
Joseph E. Mazurkiewicz

Immunocytochemistry is a powerful investigative approach in which one of the most exacting examples of specificity, that of the reaction of an antibody with its antigen, isused to localize tissue and cell specific molecules in situ. Following the introduction of fluorescent labeled antibodies in T950, a large number of molecules of biological interest had been studied with light microscopy, especially antigens involved in the pathogenesis of some diseases. However, with advances in electron microscopy, newer methods were needed which could reveal these reactions at the ultrastructural level. An electron dense label that could be coupled to an antibody without the loss of immunologic activity was desired.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
R. Stephens ◽  
G. Schidlovsky ◽  
S. Kuzmic ◽  
P. Gaudreau

The usual method of scraping or trypsinization to detach tissue culture cell sheets from their glass substrate for further pelletization and processing for electron microscopy introduces objectionable morphological alterations. It is also impossible under these conditions to study a particular area or individual cell which have been preselected by light microscopy in the living state.Several schemes which obviate centrifugation and allow the embedding of nondetached tissue culture cells have been proposed. However, they all preserve only a small part of the cell sheet and make use of inverted gelatin capsules which are in this case difficult to handle.We have evolved and used over a period of several years a technique which allows the embedding of a complete cell sheet growing at the inner surface of a tissue culture roller tube. Observation of the same cell by light microscopy in the living and embedded states followed by electron microscopy is performed conveniently.


Author(s):  
I. Brent Heath

Detailed ultrastructural analysis of fungal mitotic systems and cytoplasmic microtubules might be expected to contribute to a number of areas of general interest in addition to the direct application to the organisms of study. These areas include possibly fundamental general mechanisms of mitosis; evolution of mitosis; phylogeny of organisms; mechanisms of organelle motility and positioning; characterization of cellular aspects of microtubule properties and polymerization control features. This communication is intended to outline our current research results relating to selected parts of the above questions.Mitosis in the oomycetes Saprolegnia and Thraustotheca has been described previously. These papers described simple kinetochores and showed that the kineto- chores could probably be used as markers for the poorly defined chromosomes. Kineto- chore counts from serially sectioned prophase mitotic nuclei show that kinetochore replication precedes centriole replication to yield a single hemispherical array containing approximately the 4 n number of kinetochore microtubules diverging from the centriole associated "pocket" region of the nuclear envelope (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document