Microstructure of pores in N+-silicon layers

Author(s):  
V. S. Kaushik

Oxidized porous silicon has drawn considerable interest as one of the alternatives for implementing silicon-on-insulator technology. Buried porous layers can be formed by utilizing the preferential pore formation in highly doped silicon during anodic etching in hydrofluoric acid. This porous silicon layer (PSL) can be subsequently oxidized rapidly at low temperatures to yield a device-quality silicon island layer, which is dielectrically isolated from the substrate. Although pores can be formed in both n-type and p-type silicon, the latter has received more attention. This paper presents the results of cross-sectional TEM (XTEM) observations of the microstructure of pores in n+ silicon.Samples used in this study were n- /n+/n- doped silicon (001) wafers which had been anodically etched in a hydrofluoric acid solution to form the PSL in the n+ layer via trenches etched through the n- surface layer.

1996 ◽  
Vol 452 ◽  
Author(s):  
Klaus Y.J. Hsu ◽  
C. H. Lee ◽  
C. C. Yeh

AbstractInexpensive full-wafer SOI substrates are appealing for various applications such as ULSI. As an attempt to achieve this goal, low-temperature deposition of silicon on novel porous Si-on-insulator (PSOI) substrates was performed in this work. The bottom insulator was obtained by anodically oxidizing a pre-formed porous silicon film in HCl solution. The thickness, uniformity and quality of the resulted bottom oxide layer as well as the residual porous silicon layer above were well-controlled. Low-temperature PECVD growth of silicon on the PSOI wafer was conducted by using the residual porous silicon as the seed. Cross-sectional TEM pictures and electron diffraction patterns showed that poly-Si films were formed on PSOI substrates under the conditions of 98% hydrogen dilution ratio, 20 Watts RF power, and 300°C substrate temperature. Further thermal annealing at 1050°C for 30 minutes significantly enhanced the crystallinity of the deposited films. Combined with the excellent insulation ability of the bottom oxide, the technique is suitable for future inexpensive full-wafer SOI fabrication.


2017 ◽  
Vol 68 (7) ◽  
pp. 53-57 ◽  
Author(s):  
Martin Kopani ◽  
Milan Mikula ◽  
Daniel Kosnac ◽  
Jan Gregus ◽  
Emil Pincik

AbstractThe morphology and chemical bods of p-type and n-type porous Si was compared. The surface of n-type sample is smooth, homogenous without any features. The surface of p-type sample reveals micrometer-sized islands. FTIR investigation reveals various distribution of SiOxHycomplexes in both p-and n-type samples. From the conditions leading to porous silicon layer formation (the presence of holes) we suggest both SiOxHyand SiFxHycomplexes in the layer.


2012 ◽  
Vol 576 ◽  
pp. 519-522 ◽  
Author(s):  
Fadzilah Suhaimi Husairi ◽  
Maslihan Ain Zubaidah ◽  
Shamsul Faez M. Yusop ◽  
Rusop Mahmood Mohamad ◽  
Saifolah Abdullah

This article reports on the electrical properties of porous silicon nanostructures (PSiNs) in term of its surface topography. In this study, the PsiNs samples were prepared by using different current density during the electrochemical etching of p-type silicon wafer. PSiNs has been investigated its electrical properties and resistances for different surface topography of PSiNs via current-voltage (I-V) measurement system (Keithley 2400) while its physical structural properties was investigated by using atomic force microscopy (AFM-XE100).


2006 ◽  
Author(s):  
Jian Li ◽  
Junming An ◽  
Hongjie Wang ◽  
Junlei Xia ◽  
Dingshan Gao ◽  
...  

2015 ◽  
Vol 1131 ◽  
pp. 25-34
Author(s):  
Chanika Puridetvorakul ◽  
Chalongwut Boonpratum ◽  
Wandee Onreabroy ◽  
Tula Jutarosaga

Nanostructured porous silicon layer were successfully formed by an anodization method in viscous electrolyte containing glycerol and NH4F solution. P-type (100) silicon wafers were anodized with various anodizing times (1-8 h), NH4F concentrations (0.5-3 M) and applied voltages (10-30 V). The current density characteristic during anodizing and the morphology of porous silicon were measured using data acquisition loggers and field emission electron microscope (FE-SEM), respectively. The anodized surface produced high surface roughness and showed two types of porous structures consisting of macropores (macro-PSi) and mesopores (meso-PSi). The meso-Psi located in the macro-PSi structures. The size of macro-PSi increased with the increase of anodization time, the decrease of NH4F concentration and the decrease of applied voltage. The average diameter and depth of macro-PSi varied from 0.34 to 1.40 μm and 54 to 446 nm, respectively. For the meso-PSi, this method can produce an average diameter and thickness of mesopores in the range of 19-33 nm and 52-157 nm, respectively.


Sign in / Sign up

Export Citation Format

Share Document