Ecological genetics and evolution in insect pests: Implications for lower input agriculture

1987 ◽  
Vol 2 (4) ◽  
pp. 153-159 ◽  
Author(s):  
Ellen L. Simms

AbstractThis paper has three goals: (1) to convince ecologists and evolutionary biologists to study the evolution in insects of the ability to overcome crop protection measures, (2) to provide insights into the kinds of data needed to develop methods for retarding the evolution of such traits, and (3) to suggest that the study of these phenomena can further our understanding of evolution. The evolution of resistance to chemical insecticides often results in higher application rates and constant development of new classes of these potentially environmentally degrading toxicants. Moreover, it is important to understand resistance phenomena related to alternative crop protection measures involving plant genetic resistance and biological insecticides so that these less environmentally damaging control measures can be maintained. Insecticide resistance evolves in insect populations in response to selection by chemical compounds. Similarly, selection by host-plant defenses of resistant crops leads to the evolution of virulence to those varieties. The evolution of these traits constitutes an important subject of applied evolutionary biology. In the context of single-gene evolutionary models, this article reviews the most common strategies that have been suggested for retarding the evolution of insecticide resistance. These models are also used to illustrate the effects of ecological factors and genetical properties of insect populations on the evolution of resistance. Where appropriate, the relevance of these models to the evolution of virulence to resistant crop varieties is also described. Durability in the insecticidal effectiveness of a plant protective chemical is not incompatible with the requirement for health safety in the same material.

1963 ◽  
Vol 26 (8) ◽  
pp. 255-258
Author(s):  
Eldon P. Savage

Summary Monitoring devices for determining population characteristics of the fly, roach, miscellaneous insect pests, and rodents are described along with ecologic factors. Entomologic surveillance of fly populations is accomplished by use of the fly grill, fly trap, and visual observations. These all require periodic evaluations to determine population changes. Cockroach evaluations are made by direct count and observations, coupled with nocturnal inspection of premises timed to coincide with peak roach activity. Other insect populations are monitored for presence or absence by checking sites such as windows for flying insects, and examining floors, pallets, and walls for insects that have emerged. Sacked grains and cereal infestations are checked for insect presence by examining the exteriors of the bags and the stitched ends. Presence or absence of rodents is usually determined by searches for rodent signs. However, total rodent populations can be estimated. Most sanitarians consider the presence of a single fly, rat, or other pest in a milk or food establishment objectional. Until this goal of complete exclusion of insects and rodents is reached, food and milk sanitarians should give serious thought to developing improved monitoring tools based on insect and rodent ecology.


2005 ◽  
Vol 144 (1) ◽  
pp. 31-43 ◽  
Author(s):  
E.-C. OERKE

Productivity of crops grown for human consumption is at risk due to the incidence of pests, especially weeds, pathogens and animal pests. Crop losses due to these harmful organisms can be substantial and may be prevented, or reduced, by crop protection measures. An overview is given on different types of crop losses as well as on various methods of pest control developed during the last century.Estimates on potential and actual losses despite the current crop protection practices are given for wheat, rice, maize, potatoes, soybeans, and cotton for the period 2001–03 on a regional basis (19 regions) as well as for the global total. Among crops, the total global potential loss due to pests varied from about 50% in wheat to more than 80% in cotton production. The responses are estimated as losses of 26–29% for soybean, wheat and cotton, and 31, 37 and 40% for maize, rice and potatoes, respectively. Overall, weeds produced the highest potential loss (34%), with animal pests and pathogens being less important (losses of 18 and 16%). The efficacy of crop protection was higher in cash crops than in food crops. Weed control can be managed mechanically or chemically, therefore worldwide efficacy was considerably higher than for the control of animal pests or diseases, which rely heavily on synthetic chemicals. Regional differences in efficacy are outlined. Despite a clear increase in pesticide use, crop losses have not significantly decreased during the last 40 years. However, pesticide use has enabled farmers to modify production systems and to increase crop productivity without sustaining the higher losses likely to occur from an increased susceptibility to the damaging effect of pests.The concept of integrated pest/crop management includes a threshold concept for the application of pest control measures and reduction in the amount/frequency of pesticides applied to an economically and ecologically acceptable level. Often minor crop losses are economically acceptable; however, an increase in crop productivity without adequate crop protection does not make sense, because an increase in attainable yields is often associated with an increased vulnerability to damage inflicted by pests.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Muhammad Mubashar ZAFAR ◽  
Abdul RAZZAQ ◽  
Muhammad Awais FAROOQ ◽  
Abdul REHMAN ◽  
Hina FIRDOUS ◽  
...  

AbstractThe introduction of Bacillus thuringiensis (Bt) cotton has reduced the burden of pests without harming the environment and human health. However, the efficacy of Bt cotton has decreased due to field-evolved resistance in insect pests over time. In this review, we have discussed various factors that facilitate the evolution of resistance in cotton pests. Currently, different strategies like pyramided cotton expressing two or more distinct Bt toxin genes, refuge strategy, releasing of sterile insects, and gene silencing by RNAi are being used to control insect pests. Pyramided cotton has shown resistance against different cotton pests. The multiple genes pyramiding and silencing (MGPS) approach has been proposed for the management of cotton pests. The genome information of cotton pests is necessary for the development of MGPS-based cotton. The expression cassettes against various essential genes involved in defense, detoxification, digestion, and development of cotton pests will successfully obtain favorable agronomic characters for crop protection and production. The MGPS involves the construction of transformable artificial chromosomes, that can express multiple distinct Bt toxins and RNAi to knockdown various essential target genes to control pests. The evolution of resistance in cotton pests will be delayed or blocked by the synergistic action of high dose of Bt toxins and RNAi as well as compliance of refuge requirement.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


2015 ◽  
Vol 22 (2) ◽  
pp. 149-163 ◽  
Author(s):  
Maria Macedo ◽  
Caio de Oliveira ◽  
Poliene Costa ◽  
Elaine Castelhano ◽  
Marcio Silva-Filho

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdou Talipouo ◽  
Konstantinos Mavridis ◽  
Elysée Nchoutpouen ◽  
Borel Djiappi-Tchamen ◽  
Emmanouil Alexandros Fotakis ◽  
...  

AbstractCulex mosquitoes particularly Culex quinquefasciatus are important arboviral and filariasis vectors, however despite this important epidemiological role, there is still a paucity of data on their bionomics. The present study was undertaken to assess the insecticide resistance status of Cx. quinquefasciatus populations from four districts of Yaoundé (Cameroon). All Culex quinquefasciatus populations except one displayed high resistance to bendiocarb and malathion with mortalities ranging from 0 to 89% while high resistance intensity against both permethrin and deltamethrin was recorded. Molecular analyses revealed high frequencies of the ACE-1 G119S mutation (ranging from 0 to 33%) and kdr L1014F allele (ranging from 55 to 74%) in all Cx. quinquefasciatus populations. Significant overexpression was detected for cytochrome P450s genes CYP6AA7 and CYP6Z10, as well as for Esterase A and Esterase B genes. The total cuticular hydrocarbon content, a proxy of cuticular resistance, was significantly increased (compared to the S-lab strain) in one population. The study confirms strong insecticide resistance mediated by different mechanisms in Cx. quinquefasciatus populations from the city of Yaoundé. The expansion of insecticide resistance in Culex populations could affect the effectiveness of current vector control measures and stress the need for the implementation of integrated vector control strategies in urban settings.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Pauline Winnie Orondo ◽  
Steven G. Nyanjom ◽  
Harrysone Atieli ◽  
John Githure ◽  
Benyl M. Ondeto ◽  
...  

Abstract Background Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. Methods The study was carried out in 2018–2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. Results Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8–84% to 83.3–78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1–16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. Conclusion Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides. Graphic abstract


1973 ◽  
Vol 7 (3) ◽  
pp. 109-116 ◽  
Author(s):  
L R Taylor

Effective control of erratic crop pests requires accurate timing of treatments, and the dynamics of insect populations are inadequately understood. Aerial monitoring for many species simultaneously, instead of sampling each crop separately, enables the Rothamsted Insect Survey to provide accurate, quantitative, synoptic information on current levels of pest populations; this gives continuity to local assessment for advisory purposes, and adds a spatial dimension to population dynamics.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Abebe Chindi ◽  
Egata Shunka ◽  
Atsede Solomon ◽  
W. Giorgis Gebremedhin ◽  
Ebrahim Seid ◽  
...  

AbstractQuality seed is one of the major bottlenecks hampering the production and productivity of potato not only in Ethiopia but also in Sub-Saharan Africa. Since the 1970’s, the Ethiopian Institute of Agricultural Research has generated a number of improved potato production technologies such as improved varieties with accompanying agronomic practices, crop protection measures, postharvest handling techniques and utilization options. The developed technologies were promoted from 2013-2015 via technology promotion and popularization to the Wolmera, Adea-Bera and Ejere districts with the objective of creating awareness and up scaling of improved potato production and utilization technologies. The Potato Improvement Research Program and the Research and Extension Division of Holetta Research Center in collaboration with extension staff of the Ministry of Agriculture (MoA) undertake this activity. The farmers were selected and organized in Farmer Field Schools and all stakeholders were engaged before distributing potato seeds and planting on selected farmers’ fields for demonstrating of potato production technologies. A total of 899 farmers and 40 agricultural experts were trained and 27.7, 9 and 5.5 tons of quality seeds of Gudanie, Jalenie and Belete potato varieties, respectively, were delivered as a revolving seed with their recommended agronomic packages; this amount of seed covered 21.1 ha. A total of 16 farmer groups from Wolmera, 7 from Adea-Berga, and 11 from Ejere participated. They produced over 434 tons of relatively clean seed and constructed 8 diffused light stores. In addition to the demonstration of improved potato varieties, information dissemination was also an important component of the program to raise awareness for a large numbers of potato growers through farmers’ field days, pamphlets, and mass media. Each year about three field days were organized and more than 1500 pamphlets were distributed to farmers invited from neighboring districts and ‘Kebeles’ to enhance speed. Through this intervention farmers are now harvesting a yield of about 26-34 t/ha up from 8t/ha when they were using inferior quality potato seed; this has made the farmers in the intervention area more food secure especially during the usually food scarce months of August to October when cereal crops are generally yet to mature. The farmers are also getting additional income from the sale of excess potato and are able to better meet other necessary costs like school fees, for their children.


2021 ◽  
Vol 65 (2) ◽  
pp. 279-290
Author(s):  
Ricardo Alberto Toledo-Hernández ◽  
Mónica Pulido-Enríquez ◽  
Francisco Landeros-Pedro ◽  
Douglas Rodríguez ◽  
Daniel Sánchez

Abstract Crop protection substances are continuously developed to prevent the decimation of non-target insect populations through insecticide use. The bait formulation Acttra SWD was created to attract the adult spotted-wing drosophila, a generalist pest of berries, and when mixed with insecticide would cause a reduction in the volume of insecticide applied, thus avoiding a complete coverage of crops and resulting in economic and ecological benefits to society. However, Acttra SWD has some compounds, including sugars and fruit odors, that might attract non-target fauna, especially insect pollinators. Therefore this study aimed (1) to investigate if Acttra SWD mixed with the recommended pesticide, i.e. spinosad (Entrust), is attractive to the honey bee, which is extensively used for berry pollination and (2) to evaluate the insecticidal activity of Acttra/Entrust in oral and contact tests on the same species. In all replicates, most foragers rejected feeders that offered Acttra/Entrust, and some switched to Acttra/Entrust-free feeders. Accordingly, mortality caused by this mixture in oral tests was low and did not differ from control, since the majority of bees did not consume the Acttra/Entrust treatment. However, mortality caused by this mixture was higher than in control groups in topical tests. Our results indicate that honey bees will not be attracted to and poisoned by crops sprayed with Acttra/Entrust, but contact with the bait would result in lethal or sub-lethal effects.


Sign in / Sign up

Export Citation Format

Share Document