scholarly journals Explicating concepts in reasoning from function to form by two-step innovative abductions

Author(s):  
Ehud Kroll ◽  
Lauri Koskela

AbstractThe mechanism of design reasoning from function to form is suggested to consist of a two-step inference of the innovative abduction type. First is an inference from a desired functional aspect to an idea, concept, or solution principle to satisfy the function. This is followed by a second innovative abduction, from the latest concept to form, structure, or mechanism. The intermediate entity in the logical reasoning, the concept, is thus made explicit, which is significant in following and understanding a specific design process, for educating designers, and to build a logic-based computational model of design. The idea of a two-step abductive reasoning process is developed from the critical examination of several propositions made by others. We use the notion of innovative abduction in design, as opposed to such abduction where the question is about selecting among known alternatives, and we adopt a previously proposed two-step process of abductive reasoning. However, our model is different in that the two abductions used follow the syllogistic pattern of innovative abduction. In addition to using a schematic example from the literature to demonstrate our derivation, we apply the model to an existing, empirically derived method of conceptual design called “parameter analysis” and use two examples of real design processes. The two synthetic steps of the method are shown to follow the proposed double innovative abduction scheme, and the design processes are presented as sequences of double abductions from function to concept and from concept to form, with a subsequent deductive evaluation step.

Author(s):  
Phillip Cormier ◽  
Kemper Lewis

AbstractWhen developing an artifact, designers must first understand the problem. This includes the benefits that the artifact must deliver and the user variation that is present. Each user has a unique set of human factors, preferences, personal knowledge, and solution constraints that could potentially influence the characteristics of the artifact. Currently, there is little work supporting the process of how to formally generate user-specific design specifications, resulting in ad hoc or a priori decisions when generating design specifications. Further, because most design processes generate design specifications manually, the number of design specifications is not typically addressed at the user level. This research presents an affordance-based approach for use in the early stages of design to help designers establish user-specific design specifications. This information can then be used in the creation of a system or set of systems that meets the demands of both the user(s) and the organization that is developing the artifact. An affordance-based approach is leveraged because it maintains the relational field of view among the user, existing artifacts, and the artifact(s) being designed. Once individual design specifications are generated, designers can use this information in later stages of the design process.


1965 ◽  
Vol 2 (04) ◽  
pp. 339-359
Author(s):  
Richards T. Miller

With greatest emphasis on feasibility or conceptual design, which has been so sparsely treated in the literature, the author presents the naval ship design process from first statement of operator's requirements to final production of builder's plans. The iterative nature of conceptual design is emphasized, and a rational process for arriving at principal characteristics shown. The development of a specific design is illustrated by selected sketches and plans of the AGOR-3 class of oceanographic research ships at the conceptual, preliminary, and contract stages of design.


1999 ◽  
Author(s):  
Sridhar S. Condoor ◽  
Richard G. Weber

Abstract Conceptual design is the seminal phase in the design process. This phase determines the level of product innovation, the efficiency of the product, and the effectiveness of the down-stream stages of the design process. It has tremendous leverage on the final product performance, cost, and time-to-market. To improve the efficiency of the conceptual design process, the paper combines the parameter analysis methodology with a fundamental insight from robust design. Parameter analysis is a generic design methodology that aids in systematically developing an idea into a viable design. It is particularly useful in creating innovative conceptual designs. Robust design is, often, used after finalizing the conceptual design. Robust design improves the product quality by first reducing the variability in product performance and then, tuning the low variability performance onto the target. The paper presents guidelines for executing the parameter analysis methodology which in turn provides consistent or low variability performance by considering robustness in the very early phases of the design process. The paper illustrates this process with two case studies. The case studies also show how to qualitatively optimize a conceptual design by developing the overall concept before details.


Author(s):  
Camilo POTOCNJAK-OXMAN

Stir was a crowd-voted grants platform aimed at supporting creative youth in the early stages of an entrepreneurial journey. Developed through an in-depth, collaborative design process, between 2015 and 2018 it received close to two hundred projects and distributed over fifty grants to emerging creatives and became one of the most impactful programs aimed at increasing entrepreneurial activity in Canberra, Australia. The following case study will provide an overview of the methodology and process used by the design team in conceiving and developing this platform, highlighting how the community’s interests and competencies were embedded in the project itself. The case provides insights for people leading collaborative design processes, with specific emphasis on some of the characteristics on programs targeting creative youth


2016 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Maral Babapour Chafi

Designers engage in various activities, dealing with different materials and media to externalise and represent their form ideas. This paper presents a review of design research literature regarding externalisation activities in design process: sketching, building physical models and digital modelling. The aim has been to review research on the roles of media and representations in design processes, and highlight knowledge gaps and questions for future research.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 133
Author(s):  
Tobias Vonderbank ◽  
Katharina Schmitz

Increasing performance in modern hydraulics is achieved by a close investigation of possible enhancements of its components. Prior research has pointed out that electromechanical actuators can form suitable alternatives to hydraulically piloted control systems. Since the requirements at these actuation systems depend on the operating conditions of the system, each actuator can be optimized to the respective hydraulic system. Considering that many different conceptual designs are suitable, the phase of conceptual design plays a decisive role during the design process. Therefore, this paper focuses on the process of developing new conceptual designs for electromechanical valve actuation systems using the method of function structures. Aiming to identify special design features, which need to be considered during the design process of electromechanical actuation systems, an exemplary actuator was designed based on the derived function structure. To highlight the potential of function structures for the development of new electromechanical valve actuation systems, two principal concepts, which allow the reduction of the necessary forces, have been developed by extending the function structure. These concepts have been experimentally investigated to identify their advantages and disadvantages.


Author(s):  
David G. Ullman ◽  
Thomas G. Dietterich ◽  
Larry A. Stauffer

This paper describes the task/episode accumulation model (TEA model) of non-routine mechanical design, which was developed after detailed analysis of the audio and video protocols of five mechanical designers. The model is able to explain the behavior of designers at a much finer level of detail than previous models. The key features of the model are (a) the design is constructed by incrementally refining and patching an initial conceptual design, (b) design alternatives are not considered outside the boundaries of design episodes (which are short stretches of problem solving aimed at specific goals), (c) the design process is controlled locally, primarily at the level of individual episodes. Among the implications of the model are the following: (a) CAD tools should be extended to represent the state of the design at more abstract levels, (b) CAD tools should help the designer manage constraints, and (c) CAD tools should be designed to give cognitive support to the designer.


Author(s):  
Michael J. Safoutin ◽  
Robert P. Smith

Abstract As engineering design is subjected to increasingly formal study, an informal attitude continues to surround the topic of iteration. Today there is no standard definition or typology of iteration, no grounding theory, few metrics, and a poor understanding of its role in the design process. Existing literature provides little guidance in investigating issues of design that might be best approached in terms of iteration. We review contributions of existing literature toward the understanding of iteration in design, develop a classification of design iteration, compare iterative aspects of human and automated design, and draw some conclusions concerning management of iteration and approaches to design automation.


Author(s):  
C. P. Huang ◽  
F. W. Liou ◽  
J. J. Malyamakkil ◽  
W. F. Lu

Abstract This paper presents an advisory conceptual design tool for mechanical transmission systems. Space consideration was taken into account during the design process. A prototype function tree was built in the form of knowledge-based system to transfer a designer’s idea into a set of mechanical components. An advisory expert system was also developed to help a designer in decision making. As an example, a packaging machine is designed using the developed system.


Sign in / Sign up

Export Citation Format

Share Document