scholarly journals Predicting the incidence of hand, foot and mouth disease in Sichuan province, China using the ARIMA model – CORRIGENDUM

2015 ◽  
Vol 144 (1) ◽  
pp. 152-152 ◽  
Author(s):  
L. LIU ◽  
R. S. LUAN ◽  
F. YIN ◽  
X. P. ZHU ◽  
Q. LÜ
2015 ◽  
Vol 144 (1) ◽  
pp. 144-151 ◽  
Author(s):  
L. LIU ◽  
R. S. LUAN ◽  
F. YIN ◽  
X. P. ZHU ◽  
Q. LÜ

SUMMARYHand, foot and mouth disease (HFMD) is an infectious disease caused by enteroviruses, which usually occurs in children aged <5 years. In China, the HFMD situation is worsening, with increasing number of cases nationwide. Therefore, monitoring and predicting HFMD incidence are urgently needed to make control measures more effective. In this study, we applied an autoregressive integrated moving average (ARIMA) model to forecast HFMD incidence in Sichuan province, China. HFMD infection data from January 2010 to June 2014 were used to fit the ARIMA model. The coefficient of determination (R2), normalized Bayesian Information Criterion (BIC) and mean absolute percentage of error (MAPE) were used to evaluate the goodness-of-fit of the constructed models. The fitted ARIMA model was applied to forecast the incidence of HMFD from April to June 2014. The goodness-of-fit test generated the optimum general multiplicative seasonal ARIMA (1,0,1) × (0,1,0)12 model (R2 = 0·692, MAPE = 15·982, BIC = 5·265), which also showed non-significant autocorrelations in the residuals of the model (P = 0·893). The forecast incidence values of the ARIMA (1,0,1) × (0,1,0)12 model from July to December 2014 were 4103–9987, which were proximate forecasts. The ARIMA model could be applied to forecast HMFD incidence trend and provide support for HMFD prevention and control. Further observations should be carried out continually into the time sequence, and the parameters of the models could be adjusted because HMFD incidence will not be absolutely stationary in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cong Xie ◽  
Haoyu Wen ◽  
Wenwen Yang ◽  
Jing Cai ◽  
Peng Zhang ◽  
...  

AbstractHand, foot, and mouth disease (HFMD) is common among children below 5 years. HFMD has a high incidence in Hubei Province, China. In this study, the Prophet model was used to forecast the incidence of HFMD in comparison with the autoregressive-integrated moving average (ARIMA) model, and HFMD incidence was decomposed into trends, yearly, weekly seasonality and holiday effect. The Prophet model fitted better than the ARIMA model in daily reported incidence of HFMD. The HFMD incidence forecast by the Prophet model showed that two peaks occurred in 2019, with the higher peak in May and the lower peak in December. Periodically changing patterns of HFMD incidence were observed after decomposing the time-series into its major components. In specific, multi-year variability of HFMD incidence was found, and the slow-down increasing point of HFMD incidence was identified. Relatively high HFMD incidences appeared in May and on Mondays. The effect of Spring Festival on HFMD incidence was much stronger than that of other holidays. This study showed the potential of the Prophet model to detect seasonality in HFMD incidence. Our next goal is to incorporate climate variables into the Prophet model to produce an accurate forecast of HFMD incidence.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wendong Liu ◽  
Changjun Bao ◽  
Yuping Zhou ◽  
Hong Ji ◽  
Ying Wu ◽  
...  

Abstract Background Hand, foot and mouth disease (HFMD) is a rising public health problem and has attracted considerable attention worldwide. The purpose of this study was to develop an optimal model with meteorological factors to predict the epidemic of HFMD. Methods Two types of methods, back propagation neural networks (BP) and auto-regressive integrated moving average (ARIMA), were employed to develop forecasting models, based on the monthly HFMD incidences and meteorological factors during 2009–2016 in Jiangsu province, China. Root mean square error (RMSE) and mean absolute percentage error (MAPE) were employed to select model and evaluate the performance of the models. Results Four models were constructed. The multivariate BP model was constructed using the HFMD incidences lagged from 1 to 4 months, mean temperature, rainfall and their one order lagged terms as inputs. The other BP model was fitted just using the lagged HFMD incidences as inputs. The univariate ARIMA model was specified as ARIMA (1,0,1)(1,1,0)12 (AIC = 1132.12, BIC = 1440.43). And the multivariate ARIMAX with one order lagged temperature as external predictor was fitted based on this ARIMA model (AIC = 1132.37, BIC = 1142.76). The multivariate BP model performed the best in both model fitting stage and prospective forecasting stage, with a MAPE no more than 20%. The performance of the multivariate ARIMAX model was similar to that of the univariate ARIMA model. Both performed much worse than the two BP models, with a high MAPE near to 40%. Conclusion The multivariate BP model effectively integrated the autocorrelation of the HFMD incidence series. Meanwhile, it also comprehensively combined the climatic variables and their hysteresis effects. The introduction of the climate terms significantly improved the prediction accuracy of the BP model. This model could be an ideal method to predict the epidemic level of HFMD, which is of great importance for the public health authorities.


2014 ◽  
Vol 143 (4) ◽  
pp. 831-838 ◽  
Author(s):  
L. LIU ◽  
X. ZHAO ◽  
F. YIN ◽  
Q. LV

SUMMARYChina has recently experienced a marked increase in the incidence of hand, foot and mouth disease (HFMD). Effective spatio-temporal monitoring of HFMD incidence is important for successful implementation of control and prevention measures. This study monitored county-level HFMD reported incidence rates for Sichuan province, China by examining spatio-temporal patterns. County-level data on HFMD daily cases between January 2008 and December 2013 were obtained from the China Information System for Disease Control and Prevention. We first conducted purely temporal and purely spatial descriptive analyses to characterize the distribution patterns of HFMD. Then, the global Moran's I statistic and space–time scan statistic were used to detect the spatial autocorrelation and identify the high-risk clusters in each year, respectively. A total of 212267 HFMD cases were reported in Sichuan province during the study period (annual average incidence 43·65/100000), and the incidence seasonal peak was between April and July. Relatively high incidence rates appeared in the northeastern–southwestern belt. HFMD had positive spatial autocorrelation at the county level with global Moran's I increasing from 0·27 to 0·52 (P < 0·001). Spatio-temporal cluster analysis detected six most-likely clusters and several secondary clusters from 2008 to 2013. The centres of the six most-likely clusters were all located in the provincial capital city Chengdu. Chengdu and its neighbouring cities had always been spatio-temporal clusters, which indicated the need for further intensive space–time surveillance. Allocating more resources to these areas at suitable times might help to reduce HFMD incidence more effectively.


2017 ◽  
Vol 145 (15) ◽  
pp. 3264-3273 ◽  
Author(s):  
FEI YIN ◽  
YUE MA ◽  
XING ZHAO ◽  
QIANG LV ◽  
YAQIONG LIU ◽  
...  

SUMMARYIn recent years, hand, foot, and mouth disease (HFMD) has been increasingly recognized as a critical challenge to disease control and prevention in China. Previous studies have found that meteorological factors such as mean temperature and relative humidity were associated with HFMD. However, little is known about whether the diurnal temperature range (DTR) has any impact on HFMD. This study aimed to quantify the impact of DTR on childhood HFMD in 18 cities in Sichuan Province. A distributed lag non-linear model was adopted to explore the temporal lagged association of daily temperature with age-, gender- and pathogen-specific HFMD. A total of 290 123 HFMD cases aged 0–14 years were reported in the 18 cities in Sichuan Province. The DTR–HFMD relationships were non-linear in all subgroups. Children aged 6–14 years and male children were more vulnerable to the temperature changes. Large DTR had the higher risk estimates of HFMD incidence in cases of EV71 infection, while small DTR had the higher risk estimates of HFMD incidence in cases of CV-A16 infection. Our study suggested that DTR played an important role in the transmission of HFMD with non-linear and delayed effects.


Author(s):  
Sydney S. Breese ◽  
Howard L. Bachrach

Continuing studies on the physical and chemical properties of foot-and-mouth disease virus (FMDV) have included electron microscopy of RNA strands released when highly purified virus (1) was dialyzed against demlneralized distilled water. The RNA strands were dried on formvar-carbon coated electron microscope screens pretreated with 0.1% bovine plasma albumin in distilled water. At this low salt concentration the RNA strands were extended and were stained with 1% phosphotungstic acid. Random dispersions of strands were recorded on electron micrographs, enlarged to 30,000 or 40,000 X and the lengths measured with a map-measuring wheel. Figure 1 is a typical micrograph and Fig. 2 shows the distributions of strand lengths for the three major types of FMDV (A119 of 6/9/72; C3-Rezende of 1/5/73; and O1-Brugge of 8/24/73.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Sign in / Sign up

Export Citation Format

Share Document