scholarly journals Probable transmission routes of the influenza virus in a nosocomial outbreak

2018 ◽  
Vol 146 (9) ◽  
pp. 1114-1122 ◽  
Author(s):  
S. Xiao ◽  
J. W. Tang ◽  
D. S. Hui ◽  
H. Lei ◽  
H. Yu ◽  
...  

AbstractInfluenza is a long-standing public health concern, but its transmission remains poorly understood. To have a better knowledge of influenza transmission, we carried out a detailed modelling investigation in a nosocomial influenza outbreak in Hong Kong. We identified three hypothesised transmission modes between index patient and other inpatients based on the long-range airborne and fomite routes. We considered three kinds of healthcare workers’ routine round pathways in 1140 scenarios with various values of important parameters. In each scenario, we used a multi-agent modelling framework to estimate the infection risk for each hypothesis and conducted least-squares fitting to evaluate the hypotheses by comparing the distribution of the infection risk with that of the attack rates. Amongst the hypotheses tested in the 1140 scenarios, the prediction of modes involving the long-range airborne route fit better with the attack rates, and that of the two-route transmission mode had the best fit, with the long-range airborne route contributing about 94% and the fomite route contributing 6% to the infections. Under the assumed conditions, the influenza virus was likely to have spread via a combined long-range airborne and fomite routes, with the former predominant and the latter negligible.

2018 ◽  
Vol 39 (6) ◽  
pp. 688-693 ◽  
Author(s):  
Vicki Stover Hertzberg ◽  
Yuke A. Wang ◽  
Lisa K. Elon ◽  
Douglas W. Lowery-North

OBJECTIVESThe risk of cross infection in a busy emergency department (ED) is a serious public health concern, especially in times of pandemic threats. We simulated cross infections due to respiratory diseases spread by large droplets using empirical data on contacts (ie, close-proximity interactions of ≤1m) in an ED to quantify risks due to contact and to examine factors with differential risks associated with them.DESIGNProspective study.PARTICIPANTSHealth workers (HCWs) and patients.SETTINGA busy ED.METHODSData on contacts between participants were collected over 6 months by observing two 12-hour shifts per week using a radiofrequency identification proximity detection system. We simulated cross infection due to a novel agent across these contacts to determine risks associated with HCW role, chief complaint category, arrival mode, and ED disposition status.RESULTSCross-infection risk between HCWs was substantially greater than between patients or between patients and HCWs. Providers had the least risk, followed by nurses, and nonpatient care staff had the most risk. There were no differences by patient chief complaint category. We detected differential risk patterns by arrival mode and by HCW role. Although no differential risk was associated with ED disposition status, 0.1 infections were expected per shift among patients admitted to hospital.CONCLUSIONThese simulations demonstrate that, on average, 11 patients who were infected in the ED will be admitted to the hospital over the course of an 8-week local influenza outbreak. These patients are a source of further cross-infection risk once in the hospital.Infect Control Hosp Epidemiol 2018;39:688–693


2002 ◽  
Vol 23 (10) ◽  
pp. 615-619 ◽  
Author(s):  
Catherine Sartor ◽  
Christine Zandotti ◽  
Fanny Romain ◽  
Véronique Jacomo ◽  
Sophie Simon ◽  
...  

Objective:To describe a nosocomial influenza A out-break, how it was managed, what impact it had on subsequent delivery of health care, and the additional charges attributable to it.Design:Prospective cohort study and microbiological investigation.Setting:One internal medicine unit in an acute care, university-affiliated hospital.Participants:Twenty-three patients and 22 staff members from February 28 to March 6,1999.Results:Attack rates were 41% (9 of 22) among patients and 23% (5 of 22) among staff members, with 3 of 14 cases being classified as “certain”. The influenza virus isolates were typed as A/SYDNEY/5/97 (H3N2). The index case was a patient who shared a room with the first nosocomial case. Vaccination rates for influenza virus were 43% (10 of 23) among patients and 36% (8 of 22) among staff members. The outbreak resulted in staff members' taking 14 person-days of sick leave. Furthermore, 8 scheduled admissions were postponed and all emergency admissions were suspended for 11 days. Hospital charges attributable to the influenza outbreak totaled $34,179 and the average extra charge per infected patient was $3,798.Conclusions:Nosocomial influenza outbreaks increase charges and alter the quality of care delivered in acute care settings. Strategies for their prevention need to be evaluated in acute care settings. (Infect Control Hosp Epidemiol 2002;23:615-619).


2021 ◽  
Author(s):  
Romain Pigeault ◽  
Mathieu Chevalier ◽  
Camille-sophie Cozzarolo ◽  
Molly Baur ◽  
Mathilde Arlettaz ◽  
...  

Co-infections with multiple pathogens are common in the wild and may act as a strong selective pressure on both host and parasite evolution. Yet, contrary to single infection, the factors that shape co-infection risk are largely under-investigated. Here, we explored the extent to which bird ecology and phylogeny impact single and co-infection probabilities by haemosporidian parasites using large datasets from museum collections and a Bayesian phylogenetic modelling framework. While both phylogeny and species attributes (e.g. size of the geographic range, life-history strategy, migration) were relevant predictors of co-infection risk, these factors were less pertinent in predicting the probability of being single infected. Our study suggests that co-infection risk is under a stronger deterministic control than single-infection risk. These results underscore the combined influence of host evolutionary history and species attributes in determining single and co-infection pattern providing new avenues regarding our ability to predict infection risk in the wild.


2020 ◽  
pp. 088626052091857
Author(s):  
Shih-Ying Cheng ◽  
April Chiung-Tao Shen ◽  
Melissa Jonson-Reid

Teen dating violence (TDV) is a major global public health concern. Few studies, however, have examined profiles of TDV in Chinese societies and how these profiles might be associated with teens’ mental health. The current study analyzed a sample of 891 middle and high school students with dating experience in Taiwan, Hong Kong, and Shanghai. Latent class analysis (LCA) and multinomial logit regression analysis were performed in an attempt to identify profiles of TDV and then investigate possible associations between class membership and self-reported depression. The results of LCA suggested that a four-class model was the best fit for the data: Severe/Multi-Type TDV (5.51%), Controlling Behavior (13.08%), Non/Low TDV (64.50%), and Physical Violence (16.91%). The best-fit model suggested bidirectionality, meaning among teen partners in an abusive relationship, both tended to participate in violent acts and controlling behaviors. The results of the multinomial regression showed that, compared with the Non/Low TDV class, teens in the Severe/Multi-Type TDV class or Controlling Behavior class had greater odds of screening positive for depression. There was no significant difference in the risk of depression between the Physical Violence class and the Non/Low TDV class. Implications for future research and practice are also discussed herein.


2019 ◽  
Vol 10 ◽  
pp. 1038-1047 ◽  
Author(s):  
Zaid K Alghrair ◽  
David G Fernig ◽  
Bahram Ebrahimi

The influenza (“flu”) type-A virus is a major medical and veterinary health concern and causes global pandemics. The peptide “FluPep” is an established inhibitor of influenza virus infectivity in model systems. We have explored the potential for noble-metal nanoparticle conjugates of FluPep to enhance its antiviral activity and to determine their potential as a delivery platform for FluPep. FluPep ligand is FluPep extended at its N-terminus with the sequence CVVVTAAA, to allow for its incorporation into a mixed-matrix ligand shell of a peptidol and an alkanethiol ethylene glycol consisting of 70% CVVVTol and 30% HS(CH2)11(OC2H4)4OH (mol/mol). Gold and silver nanoparticles (ca. 10 nm diameter) with up to 5% (mol/mol) FluPep ligand remained as stable as the control of mixed-matrix-passivated nanoparticles in a variety of tests, including ligand exchange with dithiothreitol. The free FluPep ligand peptide was found to inhibit viral plaque formation in canine MDCK cells (IC50 = 2.1 nM), but was less potent than FluPep itself (IC50 = 140 pM). Nanoparticles functionalised with FluPep ligand showed enhanced antiviral activity compared to the free peptides. The IC50 value of the FluPep-functionalised nanoparticles decreased as the grafting density of FluPep ligand increased from 0.03% to 5% (both mol/mol), with IC50 values down to about 10% of that of the corresponding free peptide. The data demonstrate that conjugation of FluPep to gold and silver nanoparticles enhances its antiviral potency; the antimicrobial activity of silver ions may enable the design of even more potent antimicrobial inhibitors, capable of targeting both influenza and bacterial co-infections.


Author(s):  
Khalid Al-Ahmadi ◽  
Sabah Alahmadi ◽  
Ali Al-Zahrani

Middle East respiratory syndrome coronavirus (MERS-CoV) is a great public health concern globally. Although 83% of the globally confirmed cases have emerged in Saudi Arabia, the spatiotemporal clustering of MERS-CoV incidence has not been investigated. This study analysed the spatiotemporal patterns and clusters of laboratory-confirmed MERS-CoV cases reported in Saudi Arabia between June 2012 and March 2019. Temporal, seasonal, spatial and spatiotemporal cluster analyses were performed using Kulldorff’s spatial scan statistics to determine the time period and geographical areas with the highest MERS-CoV infection risk. A strongly significant temporal cluster for MERS-CoV infection risk was identified between April 5 and May 24, 2014. Most MERS-CoV infections occurred during the spring season (41.88%), with April and May showing significant seasonal clusters. Wadi Addawasir showed a high-risk spatial cluster for MERS-CoV infection. The most likely high-risk MERS-CoV annual spatiotemporal clusters were identified for a group of cities (n = 10) in Riyadh province between 2014 and 2016. A monthly spatiotemporal cluster included Jeddah, Makkah and Taif cities, with the most likely high-risk MERS-CoV infection cluster occurring between April and May 2014. Significant spatiotemporal clusters of MERS-CoV incidence were identified in Saudi Arabia. The findings are relevant to control the spread of the disease. This study provides preliminary risk assessments for the further investigation of the environmental risk factors associated with MERS-CoV clusters.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Erik A. Karlsson ◽  
Victoria A. Meliopoulos ◽  
Nicholas C. van de Velde ◽  
Lee-Ann van de Velde ◽  
Beth Mann ◽  
...  

ABSTRACT Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae. Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population. IMPORTANCE Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a “perfect storm” of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population. IMPORTANCE Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a “perfect storm” of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divyavani Gowda ◽  
Marumi Ohno ◽  
Siddabasave Gowda B. Gowda ◽  
Hitoshi Chiba ◽  
Masashi Shingai ◽  
...  

AbstractInfluenza remains a world-wide health concern, causing 290,000–600,000 deaths and up to 5 million cases of severe illnesses annually. Noticing the host factors that control biological responses, such as inflammatory cytokine secretion, to influenza virus infection is important for the development of novel drugs. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite and has essential biological functions in inflammation. However, the kinetic effects of influenza virus infection on physiological S1P levels and their signaling in multiple tissues remain unknown. In this study, we utilized a mouse model intranasally infected with 50 or 500 plaque forming units (PFU) of A/Puerto Rico/8/34 (H1N1; PR8) virus to investigate how S1P levels and expression of its regulating factors are affected by influenza virus infection by the liquid-chromatography/mass spectrometry and real-time PCR, respectively. The S1P level was significantly high in the plasma of mice infected with 500 PFU of the virus than that in control mice at 6 day-post-infection (dpi). Elevated gene expression of sphingosine kinase-1 (Sphk1), an S1P synthase, was observed in the liver, lung, white adipose tissue, heart, and aorta of infected mice. This could be responsible for the increased plasma S1P levels as well as the decrease in the hepatic S1P lyase (Sgpl1) gene in the infected mice. These results indicate modulation of S1P-signaling by influenza virus infection. Since S1P regulates inflammation and leukocyte migration, it must be worth trying to target this signaling to control influenza-associated symptoms.


Sign in / Sign up

Export Citation Format

Share Document