Independent eye movements in the turtle

1990 ◽  
Vol 5 (1) ◽  
pp. 29-41 ◽  
Author(s):  
M. Ariel

AbstractIn order to evaluate the normal eye movements of the turtle, Pseudemys scripta elegans, the positions of each eye were recorded simultaneously using two search-coil contact lenses. Optokinetic nystagmus (OKN) was strikingly unyoked in this animal such that one eye's slow-phase velocity was substantially independent of that of the other eye. On the other hand, the fast-phase motions of both eyes occurred more or less in synchrony.An eye's slow-phase gain is primarily dependent on the direction and velocity of the stimulus to that eye. Using monocular stimuli, the highest mean gain (0.54 ± 0.047; mean ± standard error of mean) occurred using temporal-to-nasal movement at 2.5 deg/s. The mean OKN gain for nasal-to-temporal movement was only 0.13 ± 0.015 at that velocity. Additionally, using the optimal monocular stimulus (temporal-to-nasal stimulation at 2.5 deg/s) only drove the occluded eye to move nasal-to-temporally at 0.085 deg/s, equivalent to a “gain” of only 0.034 ± 0.011.The binocular OKN gain during rotational stimuli was higher than monocular gain, especially during nasal-to-temporal movement at high velocities. Also the difference in slow-phase eye velocity between the two eyes was smaller during binocular rotational stimuli. In contrast, when each eye simultaneously viewed its temporal-to-nasal stimulus at an equal velocity, two behaviors were observed. Often, OKN alternated between an animal's left eye and right eye. Occasionally, both eyes moved at equal but opposite velocities.These behavioral data provide a quantitative baseline to interpret the properties of the retinal slip information in the turtle's accessory optic system. Those properties are similar to the behavior of the turtle in that both are tuned to direction and velocity independently for each eye (Rosenberg & Ariel, 1990).

1995 ◽  
Vol 5 (3) ◽  
pp. 171-186
Author(s):  
J. Kröller ◽  
F. Behrens

A moving random dot pattern was projected onto a tangent screen in front of awake untrained monkeys that were always placed in upright position. Eye movements were recorded in two dimensions to study the oblique optokinetic nystagmus (OKN) and compare it to the horizontal and vertical OKN. Any direction of pattern movement across the screen could be achieved. The angular velocity of pattern movement was varied between 6 and 180°/s. To display off-horizontal and off-vertical eye movements, the instantaneous direction and velocity of the eye movements were computed from the horizontal and vertical search coil voltages. At pattern velocities below 90°/s, stimulus-direction and direction of the OKN slow phase matched very precisely. Above 90°/s the slow-phase eye movement direction was systematically shifted toward the horizontal except for pure vertical stimulation. The slow-phase eye velocity at off-horizontal stimulation was inconstant, however; stable periods occurred repeatedly that were used to define the gain of OKN. Up to stimulus speeds of about 90°/s the OKN gain did not depend on the direction of stimulation and of OKN. At higher velocities the gain decreased with the increasing angle between stimulus direction and horizontal. Practically no vertical optokinetic afternystagmus (OKAN) could be observed, in either the up or down direction. At the onset of afternystagmus after oblique stimulation the direction of the OKAN slow phase immediately shifted over to the horizontal. The data indicate that the slow-phase direction and gain of oblique OKN with the monkey’s head upright can be described by the sum of a horizontal and a vertical velocity vector obtained during stimulation in these cardinal directions.


1960 ◽  
Vol 11 (1) ◽  
pp. 75 ◽  
Author(s):  
M Wodzicka

The monthly wool growth of three groups of rams was studied at Beltsville, Maryland. Group I received natural daylight (at 38° 53' N.) and was shorn monthly. Group II had a 7:17 hours of daylight to hours of darkness rhythm and was shorn every 6 months, once in winter and once in summer. Group III received natural daylight and was likewise shorn every 6 months. The rams of all groups produced more wool in summer than in winter. This difference was significant (P<0.001). The mean body weight and food intake were both greater in the winter months, which indicated that the seasonal rhythm of wool growth was not a consequence of poorer feeding in winter. The rams which were shorn monthly (group I) grew considerably more wool than the other two groups, but the difference was not statistically significant. The short-day treatment of group II did not increase the annual wool production nor decrease the seasonal rhythm of wool growth. The balance of evidence from this and other experiments indicates that temperature rather than light controls the seasonal rhythm of wool growth.


The diurnal inequality which the author investigates in the present paper, is that by which the height of the morning tide differs from that of the evening of the same day; a difference which is often very considerable, and of great importance in practical navigation, naval officers having frequently found that the preservation or destruction of a ship depended on a correct knowledge of the amount of this variation. In the first section of the paper he treats of the diurnal inequality in the height of the tides at Plymouth, at which port good tide observations are regularly made at the Dock Yard ; and these observations clearly indicate the existence of this inequality. As all the other inequalities of the tides have been found to follow the laws of the equilibrium theory, the author has endeavoured to trace the laws of the diurnal inequality by assuming a similar kind of correspondence with the same theory; and the results have confirmed, in the most striking manner, the correctness of that assumption. By taking the moon’s declination four days anterior to the day of observation, the results of computation accorded, with great accuracy, with the observed heights of the tides: that is, the period employed was the fifth lunar transit preceding each tide. In the second section, the observations made on the tides at Sincapore from August 1834 to August 1835, are discussed. A diurnal inequality was found to exist at that place, nearly agreeing in law and in amount with that at Plymouth ; the only difference being that, instead of four days, it was found necessary to take the lunar declination a day and a half preceding the tide ; or, more exactly, at the interpolated,or north lunar transit, which intervened between the second and third south transit preceding the tide. The diurnal inequality at Sincapore is of enormous magnitude, amounting in many cases to six feet of difference between the morning and evening tides; the whole rise of the mean tide being only seven feet at spring tides, and the difference between mean spring and neap tides not exceeding two feet.


1999 ◽  
Vol 82 (5) ◽  
pp. 2612-2632 ◽  
Author(s):  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

The mechanics of the eyeball and its surrounding tissues, which together form the oculomotor plant, have been shown to be the same for smooth pursuit and saccadic eye movements. Hence it was postulated that similar signals would be carried by motoneurons during slow and rapid eye movements. In the present study, we directly addressed this proposal by determining which eye movement–based models best describe the discharge dynamics of primate abducens neurons during a variety of eye movement behaviors. We first characterized abducens neuron spike trains, as has been classically done, during fixation and sinusoidal smooth pursuit. We then systematically analyzed the discharge dynamics of abducens neurons during and following saccades, during step-ramp pursuit and during high velocity slow-phase vestibular nystagmus. We found that the commonly utilized first-order description of abducens neuron firing rates (FR = b + kE + rE˙, where FR is firing rate, E and E˙ are eye position and velocity, respectively, and b, k, and r are constants) provided an adequate model of neuronal activity during saccades, smooth pursuit, and slow phase vestibular nystagmus. However, the use of a second-order model, which included an exponentially decaying term or “slide” (FR = b + kE + rE˙ + uË − c[Formula: see text]), notably improved our ability to describe neuronal activity when the eye was moving and also enabled us to model abducens neuron discharges during the postsaccadic interval. We also found that, for a given model, a single set of parameters could not be used to describe neuronal firing rates during both slow and rapid eye movements. Specifically, the eye velocity and position coefficients ( r and k in the above models, respectively) consistently decreased as a function of the mean (and peak) eye velocity that was generated. In contrast, the bias ( b, firing rate when looking straight ahead) invariably increased with eye velocity. Although these trends are likely to reflect, in part, nonlinearities that are intrinsic to the extraocular muscles, we propose that these results can also be explained by considering the time-varying resistance to movement that is generated by the antagonist muscle. We conclude that to create realistic and meaningful models of the neural control of horizontal eye movements, it is essential to consider the activation of the antagonist, as well as agonist motoneuron pools.


1970 ◽  
Vol 52 (2) ◽  
pp. 369-384 ◽  
Author(s):  
H. COLLEWIJN

1. Eye position in Sepia was measured in restrained animals, using a scleral search coil technique. 2. Optokinetic nystagmus was elicited by drum rotations from 0.035 up to 35°/sec. 3. Passive rotation of Sepia in darkness evoked a transient nystagmus, followed by after-nystagmus at arrest. 4. Combination of these two stimuli yielded the best results, but the ratio eye velocity/surroundings velocity was usually not better than 0.5. 5. Eye movements were conjugate and a closed eye could be driven by a seeing eye. Monocular reactions were smaller than binocular ones, but equal in both directions. 6. Fixation movements could not be demonstrated in the present conditions.


1987 ◽  
Vol 57 (4) ◽  
pp. 1033-1049 ◽  
Author(s):  
P. H. Schiller ◽  
J. H. Sandell ◽  
J. H. Maunsell

Rhesus monkeys were trained to make saccadic eye movements to visual targets using detection and discrimination paradigms in which they were required to make a saccade either to a solitary stimulus (detection) or to that same stimulus when it appeared simultaneously with several other stimuli (discrimination). The detection paradigm yielded a bimodal distribution of saccadic latencies with the faster mode peaking around 100 ms (express saccades); the introduction of a pause between the termination of the fixation spot and the onset of the target (gap) increased the frequency of express saccades. The discrimination paradigm, on the other hand, yielded only a unimodal distribution of latencies even when a gap was introduced, and there was no evidence for short-latency "express" saccades. In three monkeys either the frontal eye field or the superior colliculus was ablated unilaterally. Frontal eye field ablation had no discernible long-term effects on the distribution of saccadic latencies in either the detection or discrimination tasks. After unilateral collicular ablation, on the other hand, express saccades obtained in the detection paradigm were eliminated for eye movements contralateral to the lesion, leaving only a unimodal distribution of latencies. This deficit persisted throughout testing, which in one monkey continued for 9 mo. Express saccades were not observed again for saccades contralateral to the lesion, and the mean latency of the contralateral saccades was longer than the mean latency of the second peak for the ipsiversive saccades. The latency distribution of saccades ipsiversive to the collicular lesion was unaffected except for a few days after surgery, during which time an increase in the proportion of express saccades was evident. Saccades obtained with the discrimination paradigm yielded a small but reliable increase in saccadic latencies following collicular lesions, without altering the shape of the distribution. Unilateral muscimol injections into the superior colliculus produced results similar to those obtained immediately after collicular lesions: saccades contralateral to the injection site were strongly inhibited and showed increased saccadic latencies. This was accompanied by a decrease of ipsilateral saccadic latencies and an increase in the number of saccades falling into the express range. The results suggest that the superior colliculus is essential for the generation of short-latency (express) saccades and that the frontal eye fields do not play a significant role in shaping the distribution of saccadic latencies in the paradigms used in this study.(ABSTRACT TRUNCATED AT 400 WORDS)


1981 ◽  
Vol 11 (1) ◽  
pp. 44-46 ◽  
Author(s):  
D.P. Fourie

It is increasingly realized that hypnosis may be seen from an interpersonal point of view, meaning that it forms part of the relationship between the hypnotist and the subject. From this premise it follows that what goes on in the relationship prior to hypnosis probably has an influence on the hypnosis. Certain of these prior occurences can then be seen as waking suggestionns (however implicitly given) that the subject should behave in a certain way with regard to the subsequent hypnosis. A study was conducted to test the hypothesis that waking suggestions regarding post-hypnotic amnesia are effective. Eighteen female subjects were randomly divided into two groups. The groups listened to a tape-recorded talk on hypnosis in which for the one group amnesia for the subsequent hypnotic experience and for the other group no such amnesia was suggested. Thereafter the Stanford Hypnotic Susceptibility Scale was administered to all subjects. Only the interrogation part of the amnesia item of the scale was administered. The subjects to whom post-hypnotic amnesia was suggested tended to score lower on the amnesia item than the other subjects, as was expected, but the difference between the mean amnesia scores of the two groups was not significant.


Geophysics ◽  
1979 ◽  
Vol 44 (8) ◽  
pp. 1464-1464
Author(s):  
J. R. Hearst ◽  
R. C. Carlson

Our equations (3) and (4) are correct. They represent the difference between the attraction of the shell viewed from [Formula: see text], the outer radius of the shell, and [Formula: see text], its inner radius. (The attraction of the shell viewed from [Formula: see text] is zero.) On the other hand, equations (5) and (6) of Fahlquist and Carlson represent the difference in attraction of the entire earth from the same viewpoints and thus, as they say, include a free‐air gradient term. However, their equation (5) would be correct only if the mean density of the earth were equal to that of the shell, and the free‐air gradient obtained by their equation (10) is correct only under these circumstances.


1983 ◽  
Vol 92 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Carsten Wennmo ◽  
Bengt Hindfelt ◽  
Ilmari Pyykkö

We report a quantitative analysis of eye movement disturbances in patients with isolated cerebellar disorders and patients with cerebellar disorders and concomitant brainstem involvement. The most characteristic abnormalities in the exclusively cerebellar patients were increased velocities of the slow phases of vestibular nystagmus induced by rotation in the dark and increased peak velocities of the fast phases of optokinetic nystagmus induced by full-field optokinetic stimuli. Dysmetria of saccades was found in three of six cerebellar patients and gaze nystagmus in all six patients. The typical findings in the combined cerebellobrainstem group were reduced peak velocities of voluntary saccades, defective smooth pursuit and reduced peak velocities of the fast component of nystagmus during rotation in both the dark and light. All patients with combined cerebellobrainstem disorder had dysmetric voluntary saccades and gaze nystagmus. The numbers of superimposed saccades during smooth pursuit were uniformly increased. Release of inhibition in cerebellar disorders may explain the hyperresponsiveness and inaccuracy of eye movements found in this study. In addition, when lesions also involve the brainstem, however, integrative centers coding eye velocity are affected, leading to slow and inaccurate eye movements. These features elicited clinically may be useful in the diagnosis of cerebellar and brainstem disorders.


2015 ◽  
Vol 113 (10) ◽  
pp. 3866-3892 ◽  
Author(s):  
James O. Phillips ◽  
Leo Ling ◽  
Kaibao Nie ◽  
Elyse Jameyson ◽  
Christopher M. Phillips ◽  
...  

Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0–400 μA range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear.


Sign in / Sign up

Export Citation Format

Share Document