Electrophysiological evidence for transient topographic organization of retinotectal projections during optic nerve regeneration in the lizard, Ctenophorus ornatus

1999 ◽  
Vol 16 (4) ◽  
pp. 681-693 ◽  
Author(s):  
R.V. STIRLING ◽  
S.A. DUNLOP ◽  
L.D. BEAZLEY

In the lizard, Ctenophorus ornatus, anatomical studies have revealed that optic axons regenerate to visual centers within 2 months of nerve crush but that, from the outset, the regenerated projections lack topographic order (Beazley et al., 1997; Dunlop et al., 1997b). Here we assess the functional topography of the regenerated retinotectal projections by electrophysiological recording of extracellular multiunit responses to visual stimulation and by observing the lizards' ability to capture live prey. At the completion of the electrophysiology, DiI was applied locally to the retina and the topography of the tectal projection later assessed. Electrophysiology revealed that, at 2–4.2 months, responses were weak and habituated readily; no retinotopic order was detected. Between 4.5–6 months, responses were more reliable and the majority of lizards displayed a crude retinotopic order, especially in the ventro-temporal to dorso-nasal retinal axis. Although responses were variable between 6–9 months, they tended to be more reliable again thereafter. However, from 6–18 months, the projection consistently lacked topography with many retinal regions projecting to each tectal locus. Lizards, including those with electrophysiological evidence of crude retinotopy, were consistently unable to capture live prey using the experimental eye. Labelling with DiI confirmed the absence of anatomical retinotopy throughout. Taken together, the electrophysiological and anatomical data indicate that retinotopically appropriate axon terminals (or parts thereof) are transiently active whilst inappropriately located ones are silent. Presumably in lizard map-making cues fade with time and/or the mechanisms are lacking to stabilize and refine the ephemeral map. Moreover, the transient retinotopy is insufficient for useful visual function.

Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 259-276
Author(s):  
Charles Straznicky ◽  
David Tay

Right compound eyes were formed in Xenopus embryos at stages 32–33 by the fusion of two nasal (NN), two ventral (VV) or two temporal (TT) halves. Shortly after metamorphosis the optic nerve from the compound eye was sectioned and the left intact eye removed. The retinotectal projections from the compound eye to the contralateral and ipsilateral tecta were studied by [3H]proline autoradiography and electrophysiological mapping between 6 weeks and 5 months after the postmetamorphic surgery. The results showed that NN and VV eyes projected to the entire extent of both tecta. In contrast, optic fibre projection from TT eyes, although more extensive than the normal temporal hemiretinal projection, failed to cover the caudomedial portion of the tecta. The visuotectal projections in all three combinations corresponded to typical reduplicated maps to be expected from such compound eyes, where each of the hemiretinae projected across the contralateral and ipsilateral tecta in an overlapping fashion. The rapid expansion of the hemiretinal projections of the compound eyes in the ipsilateral tectum following the removal of the resident optic fibre projection suggests that tectal markers may be carried and deployed by the incoming optic fibres themselves.


Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 159-174
Author(s):  
Charles Straznicky ◽  
David Tay

Right compound eyes were formed in Xenopus embryos at tailbud stages by the fusion of two nasal (NN), two temporal (TT) or two ventral (VV) halves. The left eye was kept intact. Two to four weeks after metamorphosis the optic nerve from the intact eye was severed to induce bilateral optic nerve regeneration. The contralateral retinotectal projections from the compound eye and the induced ipsilateral projections from the intact eye to the same (dually innervated) tectum were studied by [3H]proline autoradiography and visuotectal mapping from 3 to 6 months after the postmetamorphic surgery. The results showed that the NN, TT and VV projections, in the presence of optic fibres from the intact eye failed to spread across the whole extent of the dually innervated tectum. Unexpectedly the bulk of the regenerating projection from the intact eye was confined to the previously uninnervated parts of the dually innervated tecta, the caudomedial region in TT, the rostrolateral region in NN and the lateral region in VV eye animals. The partial segregation of the two populations of optic fibres in the dually innervated tectum has been taken as a further indication of the role of fibre-fibre and fibre-tectum interactions in retinotectal map formation.


1993 ◽  
Vol 10 (2) ◽  
pp. 297-301 ◽  
Author(s):  
L. D. Beazley ◽  
J.E. Darby

AbstractWe have previously reported that during optic nerve regeneration in the frog, 30–40% of retinal ganglion cells die, the loss being complete within 10 weeks. In the present study, we crushed the optic nerve, waited 10 weeks, and then recrushed the nerve at the same site. Retinae were examined 10 weeks later. We estimated ganglion cell numbers from cresyl-violet-stained wholemounts and found a fall of 53% compared to normals. The loss was significantly greater than the losses of 36% and 35%, respectively, in frogs which received a single optic nerve crush and were examined 10 or 20–24 weeks later. The results indicate that a second episode of ganglion cell death took place when the optic nerve regenerated a second time. We conclude that ganglion cells in the frog are not comprised of two subpopulations, only one of which intrinsically possesses the ability to regenerate.


Development ◽  
1979 ◽  
Vol 49 (1) ◽  
pp. 115-137
Author(s):  
A. G. Pettigrew ◽  
R. Lindeman ◽  
M. R. Bennett

A number of recent studies have shown that during embryonic development the initial innervation of a target structure may be made up, in part, by axons which do not form part of the mature innervation of that structure. In the present study we have examined the motor innervation of the major muscles of the chick forelimb at different stages of development using HRP-uptake-labelling of motoneurons, electrophysiological recording and measurement of muscle contraction. In the mature White Leghorn chick the major contribution to the motor innervation of the forelimb is from spinal segments 14, 15 and 16. Using the HRP-labelling technique we have shown that at stages 26—29 of development motoneurons in segments 12—17 have axon terminals in the presumptive biceps muscle. Between stages 30 and 35, however, the axon terminals arising from segments 12, 13, 16 and 17 are lost, leaving the mature innervation from segments 14 and 15. We have also observed the loss of innervation of the biceps muscle by segment 16 using electrophysiological recording of compound action potentials in the biceps nerve and by measurement of the local contraction of the biceps muscle in response to stimulation of the segmental nerves. Similar changes in the innervation of the triceps, extensor metacarpi radialis, flexor carpi ulnaris and flexor digitorum profundus muscles have also been observed. These results are discussed in relation to the hypothesis that (i) the motoneuron pools and muscles in the developing spinal cord and forelimb are matched, (ii) that some axons which arrive in a particular muscle during early development are unable to form a stable connexion and (iii) that the inability of an axon terminal to form a stable connexion in a muscle results in the death of the motoneuron. Intracellular recording from muscle cells at stage 35 shows that the synaptic site on each cell is innervated by about three separate axons. Over the next few stages, however, all but one of the innervating axons is lost. From our contraction studies it is clear that the removal of the excess axon terminals after stage 35 is not associated with the establishment of the mature segmental innervation pattern of the muscle.


2001 ◽  
Vol 18 (4) ◽  
pp. 599-604 ◽  
Author(s):  
PETER MELZER ◽  
MAUREEN K. POWERS

Retinal and visual function returns following retinal destruction by ouabain in adult goldfish (Carassius auratus). Although the precise cellular mechanisms are unclear, the ability to regenerate CNS neurons and connections that subsequently sustain visual behavior is remarkable, especially for an adult vertebrate. In this paper, we ask whether visual stimulation via new retinal cells can activate existing cells in the optic tectum, which normally receives the largest retinal projection in this species. The right eyes of adult goldfish were injected with ouabain. After 1–18 weeks the conscious, freely moving fish were exposed to spatially and temporally varying visual stimuli and the resulting tectal metabolic activity was determined with the autoradiographic deoxyglucose method. In normal controls without lesions, visual stimulation produced equally strong metabolic activity in both tectal hemispheres, peaking in the layer where most retinotectal projections terminate (N = 6). One week after ouabain injection, metabolic activity in the contralateral, deprived tectum was dramatically reduced (N = 5), closely resembling the effect of unilateral ocular enucleation (N = 5). However, 9–18 weeks after ouabain injection, metabolic activity in the deprived tectum recovered to a level that was statistically indistinguishable from normal controls (N = 6). These findings suggest that, after a comprehensive cytotoxic lesion of the retina, regenerated ganglion cells not only establish new connections with the preexisting optic tectum, but also effectively transmit visual information they receive from newly generated photoreceptors to the “old” tectum.


2010 ◽  
Vol 4 ◽  
pp. JEN.S5006 ◽  
Author(s):  
Amy T. Mccurley ◽  
Gloria V. Callard

It is well-established that neurons in the adult mammalian central nervous system (CNS) are terminally differentiated and, if injured, will be unable to regenerate their connections. In contrast to mammals, zebrafish and other teleosts display a robust neuroregenerative response. Following optic nerve crush (ONX), retinal ganglion cells (RGC) regrow their axons to synapse with topographically correct targets in the optic tectum, such that vision is restored in ~21 days. What accounts for these differences between teleostean and mammalian responses to neural injury is not fully understood. A time course analysis of global gene expression patterns in the zebrafish eye after ONX can help to elucidate cellular and molecular mechanisms that contribute to a successful neuroregeneration. To define different phases of regeneration after ONX, alpha tubulin 1 ( tuba1) and growth-associated protein 43 ( gap43), markers previously shown to correspond to morphophological events, were measured by real time quantitative PCR (qPCR). Microarray analysis was then performed at defined intervals (6 hours, 1, 4, 12, and 21 days) post-ONX and compared to SHAM. Results show that optic nerve damage induces multiple, phase-related transcriptional programs, with the maximum number of genes changed and highest fold-change occurring at 4 days. Several functional groups affected by optic nerve regeneration, including cell adhesion, apoptosis, cell cycle, energy metabolism, ion channel activity, and calcium signaling, were identified. Utilizing the whole eye allowed us to identify signaling contributions from the vitreous, immune and glial cells as well as the neural cells of the retina. Comparisons between our dataset and transcriptional profiles from other models of regeneration in zebrafish retina, heart and fin revealed a subset of commonly regulated transcripts, indicating shared mechanisms in different regenerating tissues. Knowledge of gene expression patterns in all components of the eye in a model of successful regeneration provides an entry point for functional analyses, and will help in devising hypotheses for testing normal and toxic regulatory factors.


1992 ◽  
Vol 9 (2) ◽  
pp. 149-155 ◽  
Author(s):  
M. Tennant ◽  
L. D. Beazley

AbstractWe have examined the integrity of the blood-brain barrier during optic nerve regeneration in the frog Liloria (Hyla) moorei using rhodamine B-labeled bovine serum albumin (RBA). A transient localized breakdown of the blood-brain barrier was observed between 1 and 5 weeks after extracranial optic nerve crush. The zone of breakdown progressed along the experimental optic nerve, ascended the opposite optic tract, and swept rostro-caudally across the tectum contralateral to the crushed nerve. By 7 weeks, the blood-brain barrier was once again intact along the length of the optic pathway. In a concurrent series of frogs, regenerating optic axons were visualized by anterograde transport of horseradish peroxidase (HRP). At each stage examined, the region reached by the front of regenerating axons corresponded to that in which the blood-brain barrier had been shown to break down.In contrast to the results after nerve crush, the blood-brain barrier remained intact along the length of the optic pathway following optic nerve ligation to prevent regeneration. We conclude that the breakdown of the blood-brain barrier which occurs during optic nerve regeneration in the frog is triggered by the regenerating axons.


2017 ◽  
Author(s):  
Jiaxing Wang ◽  
Ying Li ◽  
Rebecca King ◽  
Felix L. Struebing ◽  
Eldon E. Geisert

AbstractThe present study is designed to identify the influences of genetic background to optic nerve regeneration using the two parental strains C57BL/6J and DBA/2J and 7 BXD recombinant inbred strains. To study regeneration in the optic nerve, Pten was knocked down in the retinal ganglion cells using AAV, and a mild inflammatory response was induced by an intravitreal injection of zymosan with CPT-cAMP, and the axons were damaged by optic nerve crush (ONC). Regenerating axons were labeled by Cholera Toxin B and quantified 14 days after ONC. The number of axons at 0.5 mm and 1 mm from the crush site were counted. In addition, we measured the distance that 5 axons had grown down the nerve and the longest distance a single axon reached. Results showed a considerable amount of differential axonal growth across all 9 BXD strains. There was a significant difference (P=0.014 Mann-Whitney U test) in the regenerative capacity in the number of axons reaching 0.5 mm from a low of 1487.6 ± 264.9 axons in BXD102 to a high of 4175.8 ± 648.6 axons in BXD29. There were also significant differences (P=0.014 Mann-Whitney U test) in the distance axons traveled, looking at a minimum of 5 axons with the shortest distance was 787.2 ± 46.5µm in BXD102 to a maximum distance of 2025.5 ± 223.3µm in BXD29. These results reveal that genetic background can modulate axonal regeneration and that the BXD strains are a particularly well-suited model system.


Author(s):  
K. Cullen-Dockstader ◽  
E. Fifkova

Normal aging results in a pronounced spatial memory deficit associated with a rapid decay of long-term potentiation at the synapses between the perforant path and spines in the medial and distal thirds of the dentate molecular layer (DML), suggesting the alteration of synaptic transmission in the dentate fascia. While the number of dentate granule cells remains unchanged, and there are no obvious pathological changes in these cells associated with increasing age, the density of their axospinous contacts has been shown to decrease. There are indications that the presynaptic element is affected by senescence before the postsynaptic element, yet little attention has been given to the fine structure of the remaining axon terminals. Therefore, we studied the axon terminals of the perforant path in the DML across three age groups.5 Male rats (Fischer 344) of each age group (3, 24 and 30 months), were perfused through the aorta.


Author(s):  
Frank J. Longo

Measurement of the egg's electrical activity, the fertilization potential or the activation current (in voltage clamped eggs), provides a means of detecting the earliest perceivable response of the egg to the fertilizing sperm. By using the electrical physiological record as a “real time” indicator of the instant of electrical continuity between the gametes, eggs can be inseminated with sperm at lower, more physiological densities, thereby assuring that only one sperm interacts with the egg. Integrating techniques of intracellular electrophysiological recording, video-imaging, and electron microscopy, we are able to identify the fertilizing sperm precisely and correlate the status of gamete organelles with the first indication (fertilization potential/activation current) of the egg's response to the attached sperm. Hence, this integrated system provides improved temporal and spatial resolution of morphological changes at the site of gamete interaction, under a variety of experimental conditions. Using these integrated techniques, we have investigated when sperm-egg plasma membrane fusion occurs in sea urchins with respect to the onset of the egg's change in electrical activity.


Sign in / Sign up

Export Citation Format

Share Document