scholarly journals Physics and geochemistry of lakes in Vestfjella, Dronning Maud Land

2020 ◽  
Vol 32 (1) ◽  
pp. 29-42
Author(s):  
Matti Leppäranta ◽  
Arto Luttinen ◽  
Lauri Arvola

AbstractShallow Antarctic surface lakes belong to the most extreme aquatic environments on the Earth. In Vestfjella, proglacial surface lakes and ponds are characterized by a 2–5 month long period with liquid water and depths < 2 m. We give a detailed description of nine seasonal lakes and ponds situating at three nunataqs (Basen, Plogen and Fossilryggen) in western Dronning Maud Land. Their physical and geochemical properties are provided based on observations in four summers. Three main ‘lake categories‘ were found: 1) supraglacial lakes, 2) epiglacial ponds and 3) nunataq ponds. Category 3 lakes can be divided into two subgroups with regards to whether the meltwater source is glacial or just seasonal snow patches. Supraglacial lakes are ultra-oligotrophic (electrical conductivity < 10 μS cm−1, pH < 7), while in epiglacial ponds the concentrations of dissolved and suspended matter and trophic status vary over a wide range (electrical conductivity 20–110 μS cm−1, pH 6–9). In nunataq ponds, the maxima were an electrical conductivity of 1042 μS cm−1 and a pH of 10.1, and water temperature may have wide diurnal and day-to-day fluctuations (maximum 9.3°C) because snowfall, snow drift and sublimation influence the net solar irradiance.

This volume vividly demonstrates the importance and increasing breadth of quantitative methods in the earth sciences. With contributions from an international cast of leading practitioners, chapters cover a wide range of state-of-the-art methods and applications, including computer modeling and mapping techniques. Many chapters also contain reviews and extensive bibliographies which serve to make this an invaluable introduction to the entire field. In addition to its detailed presentations, the book includes chapters on the history of geomathematics and on R.G.V. Eigen, the "father" of mathematical geology. Written to commemorate the 25th anniversary of the International Association for Mathematical Geology, the book will be sought after by both practitioners and researchers in all branches of geology.


Author(s):  
David Fisher

There are eight columns in the Periodic Table. The eighth column is comprised of the rare gases, so-called because they are the rarest elements on earth. They are also called the inert or noble gases because, like nobility, they do no work. They are colorless, odorless, invisible gases which do not react with anything, and were thought to be unimportant until the early 1960s. Starting in that era, David Fisher has spent roughly fifty years doing research on these gases, publishing nearly a hundred papers in the scientific journals, applying them to problems in geophysics and cosmochemistry, and learning how other scientists have utilized them to change our ideas about the universe, the sun, and our own planet. Much Ado about (Practically) Nothing will cover this spectrum of ideas, interspersed with the author's own work which will serve to introduce each gas and the important work others have done with them. The rare gases have participated in a wide range of scientific advances-even revolutions-but no book has ever recorded the entire story. Fisher will range from the intricacies of the atomic nucleus and the tiniest of elementary particles, the neutrino, to the energy source of the stars; from the age of the earth to its future energies; from life on Mars to cancer here on earth. A whole panoply that has never before been told as an entity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan H. Gosling ◽  
Oleg Makarovsky ◽  
Feiran Wang ◽  
Nathan D. Cottam ◽  
Mark T. Greenaway ◽  
...  

AbstractPristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline O’Keeffe ◽  
Laura Rhian Pickard ◽  
Juan Cao ◽  
Giuliano Allegri ◽  
Ivana K. Partridge ◽  
...  

AbstractConventional carbon fibre laminates are known to be moderately electrically conductive in-plane, but have a poor through-thickness conductivity. This poses a problem for functionality aspects that are of increasing importance to industry, such as sensing, current collection, inductive/resistive heating, electromagnetic interference (EMI) shielding, etc. This restriction is of course more pronounced for non-conductive composite reinforcements such as glass, organic or natural fibres. Among various solutions to boost through-thickness electrical conductivity, tufting with hybrid micro-braided metal-carbon fibre yarns is one of the most promising. As a well-characterised method of through thickness reinforcement, tufting is easily implementable in a manufacturing environment. The hybridisation of materials in the braid promotes the resilience and integrity of yarns, while integrating metal wires opens up a wide range of multifunctional applications. Many configurations can be produced by varying braid patterns and the constituting yarns/wires. A predictive design tool is therefore necessary to select the right material configuration for the desired functional and structural performance. This paper suggests a fast and robust method for generating finite-element models of the braids, validates the prediction of micro-architecture and electrical conductivity, and demonstrates successful manufacturing of composites enhanced with braided tufts.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 731-742 ◽  
Author(s):  
D Lal ◽  
A J T Jull

Nuclear interactions of cosmic rays produce a number of stable and radioactive isotopes on the earth (Lai and Peters 1967). Two of these, 14C and 10Be, find applications as tracers in a wide variety of earth science problems by virtue of their special combination of attributes: 1) their source functions, 2) their half-lives, and 3) their chemical properties. The radioisotope, 14C (half-life = 5730 yr) produced in the earth's atmosphere was the first to be discovered (Anderson et al. 1947; Libby 1952). The next longer-lived isotope, also produced in the earth's atmosphere, 10Be (half-life = 1.5 myr) was discovered independently by two groups within a decade (Arnold 1956; Goel et al. 1957; Lal 1991a). Both the isotopes are produced efficiently in the earth's atmosphere, and also in solids on the earth's surface. Independently and jointly they serve as useful tracers for characterizing the evolutionary history of a wide range of materials and artifacts. Here, we specifically focus on the production of 14C in terrestrial solids, designated as in-situ-produced 14C (to differentiate it from atmospheric 14C, initially produced in the atmosphere). We also illustrate the application to several earth science problems. This is a relatively new area of investigations, using 14C as a tracer, which was made possible by the development of accelerator mass spectrometry (AMS). The availability of the in-situ 14C variety has enormously enhanced the overall scope of 14C as a tracer (singly or together with in-situ-produced 10Be), which eminently qualifies it as a unique tracer for studying earth sciences.


1997 ◽  
Vol 9 (1) ◽  
pp. 43-45 ◽  
Author(s):  
U. Wand ◽  
G. Schwarz ◽  
E. Brüggemann ◽  
K. Bräuer

Lake Untersee is the largest freshwater lake in the interior of East Antarctica. It is a perennially ice-covered, max. 169 m deep, ultra-oligotrophic lake. In contrast to earlier studies, we found clear evidence for physical and chemical stratification in the summer of 1991–92. However, the stratification was restricted to a trough, c. 500 m wide and up to 105 m deep, in the south-western part of the lake. There, the water body was distinctly stratified as indicated by sharp vertical gradients of temperature, pH, dissolved oxygen, and electrical conductivity. The water column was anoxic below 80 m. The chemical stratification is also indicated by changes of ionic ratios. Moreover, there was some evidence for methanogenesis and bacterial sulphate reduction in Lake Untersee.


2021 ◽  
Author(s):  
Richard Saltus ◽  
Arnaud Chulliat ◽  
Brian Meyer ◽  
Christopher Amante

&lt;p&gt;Magnetic maps depict spatial variations in the Earth&amp;#8217;s magnetic field.&amp;#160; These variations occur at a wide range of scales and are produced via a variety of physical processes related to factors including structure and evolution of the Earth&amp;#8217;s core field and the geologic distribution of magnetic minerals in the lithosphere.&amp;#160; Mankind has produced magnetic maps for 100&amp;#8217;s of years with increasing fidelity and accuracy and there is a general understanding (particularly among the geophysicists who produce and use these maps) of the approximate level of resolution and accuracy of these maps.&amp;#160; However, few magnetic maps, or the digital grids that typically underpin these maps, have been produced with accompanying uncertainty quantification.&amp;#160; When uncertainty is addressed, it is typically a statistical representation at the grid or survey level (e.g., +- 10 nT overall uncertainty based on line crossings for a modern airborne survey) and not at the cell by cell local level.&lt;/p&gt;&lt;p&gt;As magnetic map data are increasingly used in complex inversions and in combination with other data or constraints (including in machine learning applications), it is increasingly important to have a handle on the uncertainties in these data.&amp;#160; An example of an application with need for detailed uncertainty estimation is the use of magnetic map information for alternative navigation.&amp;#160; In this application data from an onboard magnetometer is compared with previously mapped (or modeled) magnetic variations.&amp;#160; The uncertainty of this previously mapped information has immediate implications for the potential accuracy of navigation.&lt;/p&gt;&lt;p&gt;We are exploring the factors contributing to magnetic map uncertainty and producing uncertainty estimates for testing using new data collection in previously mapped (or modeled) map areas.&amp;#160; These factors include (but are likely not limited to) vintage and type of measured data, spatial distribution of measured data, expectation of magnetic variability (e.g., geologic or geochemical environment), statistics of redundant measurement, and spatial scale/resolution of the magnetic map or model.&amp;#160; The purpose of this talk is to discuss the overall issue and our initial results and solicit feedback and ideas from the interpretation community.&lt;/p&gt;


2001 ◽  
Vol 1 ◽  
pp. 767-776 ◽  
Author(s):  
E.D. Lund ◽  
M.C. Wolcott ◽  
G.P. Hanson

Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.


Sign in / Sign up

Export Citation Format

Share Document