Effect of embryonic cell cycle of nuclear donor embryos on the efficiency of nuclear transfer in Japanese black cattle

Zygote ◽  
2007 ◽  
Vol 15 (2) ◽  
pp. 165-171
Author(s):  
M. Kishi ◽  
R. Takakura ◽  
Y. Nagao ◽  
K. Saeki ◽  
Y. Takahashi

SummaryIn the present study, the development in vitro and in vivo of nuclear transfer (NT) embryos reconstructed with embryonic cells (blastomeres) at the 32- to 63-cell (sixth cell cycle) and 64- to 127-cell (seventh cell cycle) stages was investigated to determine the optimum range of embryonic cell cycles for yielding the highest number of identical calves in Japanese black cattle. Rates of development to the blastocyst stage (overall efficiency) were higher in the sixth cell-cycle stage (45%) than in the seventh cell-cycle stage (12%). After the transfer of the blastocysts reconstructed with blastomeres of the sixth and seventh cell cycle-stage embryos to recipient heifers, there were no differences in the pregnancy (14/35: 40% versus 3/13: 23%, respectively) or calving rates (11/39: 28% versus 3/13: 23%, respectively). These results indicate that the highest number of identical calves would be obtained by using sixth cell cycle (32- to 63-cell)-stage embryos as nuclear donors.

2008 ◽  
Vol 20 (1) ◽  
pp. 169 ◽  
Author(s):  
C. E. McHughes ◽  
G. K. Springer ◽  
L. D. Spate ◽  
R. Li ◽  
R. J. Woods ◽  
...  

Identification of transcripts that are present at key development stages of preimplantation embryos is critical for a better understanding of early embryogenesis. To that end, this project had two goals. The first was to characterize the relative abundance of multiple transcripts during several developmental stages, including metaphase II-stage oocytes (MPII), and 2-cell-stage (2-cell), precompact morula (PCM), and in vitro-produced blastocyst-stage (IVTBL) embryos. The second was to characterize differences in the relative abundance of transcripts present in in vivo- (IVVBL), in vitro-, and nuclear transfer-produced (NTBL) blastocysts. It was our hypothesis that the identification of differentially represented transcripts from these stages would reveal not only developmentally important genes, but also genes that might be aberrantly expressed due to embryo production techniques. Individual clusters from a large bovine EST project (http://genome.rnet.missouri.edu/Bovine/), which focused on female reproductive tissues and embryos, were compared using Fisher's exact test weighted by number of transcripts per tissue by gene (SAS PROC FREQ; SAS Institute, Inc., Cary, NC, USA). Of the 3144 transcripts that were present during embryogenesis, 125 were found to be differentially represented (P < 0.01) in at least one pairwise comparison (Table 1). Some transcripts found to increase in representation from the MPII to the 2-cell stage include protein kinases, PRKACA and CKS1, as well as the metabolism-related gene, PTTG1. These same transcripts were also found to decrease in representation from the 2-cell to the PCM stage. RPL15 (translation) and FTH1 (immune function) were both more highly represented in the PCM than in the 2-cell stage. From PCM to IVTBL, we saw an increase in RPS11, another translation-related transcript. When comparing blastocyst-stage embryos from different production techniques, several transcripts involved in energy production (e.g., COX7B and COX8A) were found to be more highly represented in the NTBL than in the IVTBL. COX8A was also more highly represented in the IVVBL than in the IVTBL. By investigating these differentially represented transcripts, we will be able to better understand the developmental implications of embryo manipulation. We may also be able to better develop reproductive technologies that lead to in vitro- and nuclear transfer-derived embryos which more closely follow a normal program of development. Table 1. Differentially represented transcripts between developmental stages


1998 ◽  
Vol 10 (8) ◽  
pp. 615 ◽  
Author(s):  
D. N. Wells ◽  
P. M. Misica ◽  
A. M. Day ◽  
A. J. Peterson ◽  
H. R. Tervit

The production of transgenic farm animals will be greatly enhanced with the development of cultured cell lines that remain totipotent following nuclear transfer. Here, data are presented that demonstrate the generation of both male and female cloned lambs from two established embryonic cell lines. Cytoplasts derived from in vivo oocytes resulted in slightly greater development to blastocyst (24% v. 17%) and survival to term (7% v. 2%) compared with in vitro oocytes. There was no advantage in co-culturing cloned embryos with oviductal epithelial cells compared with synthetic oviductal fluid medium in terms of development to blastocyst (18% v. 31%) or survival to term (both 8%). Although the survival of cloned embryos immediately after transfer was high based on ‘biochemical’ pregnancy, 64–80% of embryos failed over the attachment phase with in vivo cytoplasts. Although the co-transfer of trophoblastic vesicles improved embryo survival to Day 35 (45% v. 25%), there was no difference at term. A high proportion of fetuses were lost during the last trimester (43%), resulting in 11% of embryos transferred developing to term using in vivo cytoplasts (12/112). Five lambs have survived and two rams are fertile. The current nuclear transfer process is inefficient and further research is needed to improve the development of healthy fetuses.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3111
Author(s):  
Po-Yu Lin ◽  
Denny Yang ◽  
Chi-Hsuan Chuang ◽  
Hsuan Lin ◽  
Wei-Ju Chen ◽  
...  

The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are ‘true’ totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely ‘cluster 3’, as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.


Zygote ◽  
2006 ◽  
Vol 14 (1) ◽  
pp. 81-87 ◽  
Author(s):  
P.N. Moreira ◽  
R. Fernández-Gonzalez ◽  
M.A. Ramirez ◽  
M. Pérez-Crespo ◽  
D. Rizos ◽  
...  

It is well known that the preimplantation culture environment to which embryos are exposed influences the expression of developmentally important genes. Recently, it has been reported that MEMα, a culture medium commonly used for somatic cells, allows high rates of preimplantation development and development to term of mouse somatic cell nuclear transfer (SCNT) embryos. The objective of this study was to compare the differential effects of this medium and of the nuclear transfer procedure on the relative mRNA abundance of several genes with key roles during preimplantation. The relative mRNA levels of nine genes (Glut 1, Glut 5, G6PDH, Bax, Survivin, Gpx 1, Oct4, mTert and IGF2bp1) were quantified at blastocyst stage on cumulus cell cloned embryos cultured in MEMα, as well as on in vivo cultured and MEMα cultured controls. Only three of the nine transcripts analysed (Glut 5, Gpx 1 and Igf2bp1) were significantly down-regulated at blastocyst stage in in vitro produced controls. However, most genes analysed in our MEMα cultured cloned embryos showed altered transcription levels. Interestingly, between cloned and in vitro produced controls only the transcription levels measured for Glut 1 were significantly different. This result suggests that Glut 1 may be a good marker for embryo quality after cumulus cell nuclear transfer.


2006 ◽  
Vol 18 (2) ◽  
pp. 248
Author(s):  
S.-G. Lee ◽  
C.-H. Park ◽  
D.-H. Choi ◽  
H.-Y. Son ◽  
C.-K. Lee

Use of blastocysts produced in vitro would be an efficient way to generate embryonic stem (ES) cells for the production of transgenic animals and the study of developmental gene regulation. In pigs, the morphology and cell number of in vitro-produced blastocysts are inferior to these parameters in their in vivo counterparts. Therefore, establishment of ES cells from blastocysts produced in vitro might be hindered by poor embryo quality. The objective of this study was to increase the cell number of blastocysts derived by aggregating 4–8-cell stage porcine embryos produced in vitro. Cumulus–oocyte complexes were collected from prepubertal gilt ovaries, and matured in vitro. Embryos at the 4–8-cell stage were produced by culturing embryos for two days after in vitro fertilization (IVF). After removal of the zona pellucida with acid Tyrode’s solution, one (1X), two (2X), and three (3X) 4–8-cell stage embryos were aggregated by co-culturing them in aggregation plates followed by culturing to the blastocyst stage. After 7 days, the developmental ability and the number of cells in aggregated embryos were determined by staining with Hoechst 33342 and propidium iodide. The percentage of blastocysts was higher in both 2X and 3X aggregated embryos compared to that of 1X and that of intact controls (Table 1). The cell number of blastocysts also increased in aggregated embryos compared to that of non-aggregated (1X) embryos and controls. This result suggests that aggregation might improve the quality of in vitro-fertilized porcine blastocysts by increasing cell numbers, thus becoming a useful resource for isolation and establishment of porcine ES cells. Further studies are required to investigate the quality of the aggregated embryos in terms of increasing the pluripotent cell population by staining for Oct-4 and to apply improved aggregation methods in nuclear-transferred (NT) porcine embryos. Table 1. Development, cell number, and ICM ratio of aggregated porcine embryos


2009 ◽  
Vol 21 (1) ◽  
pp. 129
Author(s):  
J. G. Zhao ◽  
J. W. Ross ◽  
Y. H. Hao ◽  
D. M. Wax ◽  
L. D. Spate ◽  
...  

Somatic cell nuclear transfer (SCNT) is a promising technology with potential applications in both agriculture and regenerative medicine. The reprogramming of differentiated somatic nuclei into totipotent embryonic state following NT is not efficient and the mechanism is currently unknown. However, accumulating evidence suggests that faulty epigenetic reprogramming is likely to be the major cause of low success rates observed in all mammals produced through SCNT. It has been demonstrated that increased histone acetylation in reconstructed embryos by applying histone deacetylases inhibitor (HDACi) such as trychostatin A (TSA) significantly enhanced the developmental competence in several species in vitro and in vivo. However TSA has been known to be teratogenic. Compared with TSA, Scriptaid is a low toxic but more efficient HDACi (Su GH et al. 2000 Cancer Res. 60, 3137–3142). The objectives of this study were: 1) to investigate and optimize the application Scriptaid to the NT using Landrace fetal fibroblast cells (FFCs) as donor; 2) investigate the effect of increased histone acetylation on the developmental competence of reconstructed embryos from NIH mini inbred FFCs in vitro and in vivo. The reconstructed embryos were treated with Scriptaid at different concentrations (0 nm, 250 nm, 500 nm and 1000 nm) after activation for 14 to 16 h. IVF embryos without treatment were produced as an additional control. Developmental rates to the 2-cell and blastocyst stage were determined. Developmental potential was determined by transferring Day 1 NT zygotes to the oviducts of surrogates on the day of, or one day after, the onset of estrus. Experiments were repeated at least 3 times and data were analyzed with chi-square tests using SAS 6.12 program (SAS institute, Inc., Cary, NC, USA). The percentage blastocyst of cloned embryos using Landrace FFCs as donors treated with 500 nm Scriptaid was the highest and was significantly higher than untreated group (25% v. 11%, P < 0.05). Percent cleaved was not different among four treatment groups. We used 500 nm Scriptaid for 14 to 16 h after activation for all subsequent experiments. Developmental rate to the blastocyst stage was significantly increased in cloned embryos derived from NIH mini inbred FFCs after treating with Scriptaid (21% v. 9%, P < 0.05), while the blastocyst rate in IVF group was 30%. Embryo transfer (ET) results showed that 5/6 (Transferred embryos No. were 190, 109, 154, 174, 152, and 190, respectively) surrogates (83%) became pregnant resulting in 2 healthy piglets from 2 litters (recipients received 190 and 154 embryos, respectively) in the Scriptaid treatment group, while no pregnancies were obtained in the untreated group from 5 ET (Embryos transferred No. are 140, 163, 161, 151 and 151, respectively). These results suggest that 500 nm Scriptaid treatment following activation increase both the in vitro and in vivo development of porcine SCNT embryos from NIH mini inbred FFCs and the hyperacetylation might actually improve reprogramming of the somatic nuclei after NT. Funding from the National Institutes of Health National Center for Research Resources RR018877.


2011 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
J. Lee ◽  
J. Park ◽  
Y. Chun ◽  
W. Lee ◽  
K. Song

Study for equine somatic cell nuclear transfer (SCNT) is an attractive field for research, but it has not been a major field of study because it is hard to obtain a sufficient number of ovaries and it takes a lot of time and effort for the recovery of oocytes matured in vivo by ovum pickup. It was reported that the bovine cytoplast could support the remodelling of equine donor cells (Zhou et al. 2007 Reprod. Domest. Anim. 42, 243–247). The objectives of this study are 1) to monitor the early events of equine SCNT by interspecies SCNT (isSCNT) between bovine cytoplast and equine donor cell, and 2) to investigate the developmental competence of isSCNT embryos. Bovine oocytes were recovered from the follicles of slaughtered ovaries, and matured in TCM-199 supplemented with 10 mU mL–1 FSH, 50 ng mL–1 EGF, and 10% FBS at 39°C under 5% CO2 in air for 22 h. Fibroblasts derived from bovine or equine skin tissues were synchronized at G0/G1 stage by contact inhibition for 72 h. After IVM, oocytes with polar body were enucleated and electrically fused with equine or bovine skin fibroblasts (1.0 kV cm–1, 20 μs, 2 pulses). Fused couplets were activated with 5 μM ionomycin for 4 min followed by 5 h culture in 10 μg mL–1 cycloheximide (CHX) and/or 2 mM 6-DMAP, and cultured in modified synthetic oviduct fluid (mSOF) at 39°C under 5% CO2, 5% O2, and 90% N2 for 7 days. All analyses were performed using SAS (version 9.1; SAS Institute, Cary, NC, USA). The cleavage rate of isSCNT embryos derived from equine cell was not different (252/323, 78.7%; P = 0.94) from that of SCNT embryos derived from bovine cell (230/297, 79.2%). However, the rate of isSCNT embryos developed to over 8-cell stage was lower (3.3%; P < 0.0001) than that of bovine SCNT embryos (39.4%), and total cell number of isSCNT embryos developed to over 8-cell stage was lower (17.5, n = 12; P < 0.0001) than that (80.8, n = 110) of bovine SCNT embryos. Also, the rate of blastocyst formation of isSCNT embryos (0/323; 0.0%) was lower (P < 0.0001) than that of bovine SCNT embryos (83/297; 29.3%). Meanwhile, reconstructed oocytes for isSCNT were fixed at 8 h after activation to investigate the formation of pseudo-pronucleus (PPN) after post-activation treatment with CHX or CHX+6-DMAP. The ratio of oocytes with single PPN after treatment with CHX+6-DMAP (26/35; 74.3%) was not different (P = 0.63) from that of oocytes treated with CHX (24/36; 68.1%). Although isSCNT embryos derived from bovine cytoplast and equine donor cell could not develop to more than the 16-cell stage, it is believed that the results of this isSCNT study could be used for the preliminary data regarding the reprogramming of donor cell in equine SCNT.


2001 ◽  
Vol 280 (5) ◽  
pp. R1555-R1563 ◽  
Author(s):  
Robert M. Douglas ◽  
Tian Xu ◽  
Gabriel G. Haddad

We and others recently demonstrated that Drosophila melanogaster embryos arrest development and embryonic cells cease dividing when they are deprived of O2. To further characterize the behavior of these embryos in response to O2 deprivation and to define the O2-sensitive checkpoints in the cell cycle, embryos undergoing nuclear cycles 3–13 were subjected to O2deprivation and examined by confocal microscopy under control, hypoxic, and reoxygenation conditions. In vivo, real-time analysis of embryos carrying green fluorescent protein-kinesin demonstrated that cells arrest at two major points of the cell cycle, either at the interphase (before DNA duplication) or at metaphase, depending on the cell cycle phase at which O2 deprivation was induced. Immunoblot analysis of embryos whose cell divisions are synchronized by inducible String (cdc25 homolog) demonstrated that cyclin B was degraded during low O2 conditions in interphase-arrested embryos but not in those arrested in metaphase. Embryos resumed cell cycle activity within ∼20 min of reoxygenation, with very little apparent change in cell cycle kinetics. We conclude that there are specific points during the embryonic cell cycle that are sensitive to the O2 level in D. melanogaster. Given the fact that O2deprivation also influences the growth and development of other species, we suggest that similar hypoxia-sensitive cell cycle checkpoints may also exist in mammalian cells.


1999 ◽  
Vol 11 (8) ◽  
pp. 457 ◽  
Author(s):  
Christopher G. Grupen ◽  
Paul J. Verma ◽  
Zhong Tao Du ◽  
Stephen M. McIlfatrick ◽  
Rodney J. Ashman ◽  
...  

The current protocols used to activate pig nuclear transfer embryos are less efficient than those used for other species. To address this problem, the effect of multiple sets of electrical pulses on the parthenogenetic development of in vivo- and in vitro-derived porcine oocytes was examined. Each set of pulses consisted of two 1.5 kV cm–1 DC pulses of 60 s duration each, administered 1 s apart. For in vivo-derived oocytes, application of a second set of pulses 30 min after the first set increased the proportion of oocytes that developed to the blastocyst stage compared with a single treatment (51 v. 34%). Application of a third set of pulses 30 min after the second set reduced the rate of blastocyst formation compared with two sets of pulses. In contrast, the rate of blastocyst formation was greater with one set of pulses compared with two sets for in vitro matured oocytes (31 v. 16%). Additional sets of electrical pulses did not affect the number of cells in blastocysts obtained from either group of oocytes compared with a single treatment. In summary, the study demonstrates that the application of a second set of activating pulses 30 min after the first set is beneficial to in vivo-derived oocytes, but detrimental to in vitro matured oocytes, in terms of their ability to develop parthenogenetically to the blastocyst stage.


Zygote ◽  
2003 ◽  
Vol 11 (4) ◽  
pp. 317-321 ◽  
Author(s):  
Sangho Roh ◽  
Jitong Guo ◽  
Nakisa Malakooti ◽  
John R. Morrison ◽  
Alan O. Trounson ◽  
...  

We report full-term development of nuclear transfer embryos following nuclear exchange at the 2-cell stage. Nuclei from 2-cell rat embryos were transferred into enucleated 2-cell embryos and developed to term after transfer to recipients (NT2). Pronuclear exchange in zygotes was used for comparison (NT1). Zygotes and 2-cell embryos were harvested from 4-week-old female Sprague-Dawley rats. Nuclear transfer was performed by transferring the pronuclei or karyoplasts into the perivitelline space of recipient embryos followed by electrofusion to reconstruct embryos. Fused couplets were cultured for 4 or 24 h before being transferred into day 1 pseudopregnant recipients (Hooded Wistar) at the 1- or 2-cell stage. In vitro culture was also carried out to check the developmental competence of the embryos. In vitro development to the blastocyst stage was not significantly different between the two groups (NT1, 34.3%; NT2, 45.0%). Two of three recipients from NT1 and two of five recipients from NT2 became pregnant. Six pups (3 from NT1, 3 from NT2) were delivered from the four foster mothers. Three female pups survived; 2 from NT1 and 1 from NT2. At 2 months of age these pups appeared healthy, and were mated with Sprague-Dawley males. One rat derived from NT1 delivered 15 pups (5 males, 10 females) as did the rat from NT2 (7 males, 8 females). Our results show that by using karyoplasts from 2-cell stage embryos as nuclear donors and reconstructing them with enucleated 2-cell embryos, healthy rats can be produced.


Sign in / Sign up

Export Citation Format

Share Document