Membrane lipid profile monitored by mass spectrometry detected differences between fresh and vitrified in vitro-produced bovine embryos

Zygote ◽  
2014 ◽  
Vol 23 (5) ◽  
pp. 732-741 ◽  
Author(s):  
Beatriz C. S. Leão ◽  
Nathália A. S. Rocha-Frigoni ◽  
Elaine C. Cabral ◽  
Marcos F. Franco ◽  
Christina R. Ferreira ◽  
...  

SummaryThis study aimed to evaluate the impact of vitrification on membrane lipid profile obtained by mass spectrometry (MS) of in vitro-produced bovine embryos. Matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) has been used to obtain individual embryo membrane lipid profiles. Due to conditions of analysis, mainly membrane lipids, most favorably phosphatidylcholines (PCs) and sphingomyelins (SMs) have been detected. The following ions described by their mass-to-charge ratio (m/z) and respective attribution presented increased relative abundance (1.2–20×) in the vitrified group: 703.5 [SM (16:0) + H]+; 722.5 [PC (40:3) + Na]+; 758.5 [PC (34:2) + H]+; 762.5 [PC (34:0) + H]+; 790.5 [PC (36:0) + H]+ and 810.5 [PC (38:4) + H]+ and/or [PC (36:1) + Na]+. The ion with a m/z 744.5 [PCp (34:1) and/or PCe (34:2)] was 3.4-fold more abundant in the fresh group. Interestingly, ions with m/z 722.5 or 744.5 indicate the presence of lipid species, which are more resistant to enzymatic degradation as they contain fatty acyl residues linked through ether type bonds (alkyl ether or plasmalogens, indicated by the lowercase ‘e’ and ‘p‘, respectively) to the glycerol structure. The results indicate that cryopreservation impacts the membrane lipid profile, and that these alterations can be properly monitored by MALDI-MS. Membrane lipids can therefore be evaluated by MALDI-MS to monitor the effect of cryopreservation on membrane lipids, and to investigate changes in lipid profile that may reflect the metabolic response to the cryopreservation stress or changes in the environmental conditions.

2020 ◽  
Vol 58 (6) ◽  
pp. 883-896 ◽  
Author(s):  
Muhammad Zubair Israr ◽  
Dennis Bernieh ◽  
Andrea Salzano ◽  
Shabana Cassambai ◽  
Yoshiyuki Yazaki ◽  
...  

AbstractBackgroundMatrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) has been used for more than 30 years. Compared with other analytical techniques, it offers ease of use, high throughput, robustness, cost-effectiveness, rapid analysis and sensitivity. As advantages, current clinical techniques (e.g. immunoassays) are unable to directly measure the biomarker; rather, they measure secondary signals. MALDI-MS has been extensively researched for clinical applications, and it is set for a breakthrough as a routine tool for clinical diagnostics.ContentThis review reports on the principles of MALDI-MS and discusses current clinical applications and the future clinical prospects for MALDI-MS. Furthermore, the review assesses the limitations currently experienced in clinical assays, the advantages and the impact of MALDI-MS to transform clinical laboratories.SummaryMALDI-MS is widely used in clinical microbiology for the screening of microbial isolates; however, there is scope to apply MALDI-MS in the diagnosis, prognosis, therapeutic drug monitoring and biopsy imaging in many diseases.OutlookThere is considerable potential for MALDI-MS in clinic as a tool for screening, profiling and imaging because of its high sensitivity and specificity over alternative techniques.


Author(s):  
Gabriela de Oliveira Fernandes ◽  
Marcella Pecora Milazzotto ◽  
Andrei Antonioni Guedes Fidelis ◽  
Taynan Stonoga Kawamoto ◽  
Ligiane de Oliveira Leme ◽  
...  

Abstract The present study aimed to identify biomarkers to assess the quality of in vitro produced (IVP) bovine embryos in the culture media. IVP embryos on Day (D) 5 of development were transferred to individual drops, where they were maintained for the last 48 h of culture. Thereafter, the medium was collected and the embryos were transferred to the recipients. After pregnancy diagnosis, the media were grouped into the pregnant and nonpregnant groups. The metabolic profiles of the media were analyzed via electrospray ionization mass spectrometry, and the concentrations of pyruvate, lactate, and glutamate were assessed using fluorimetry. The spectrometric profile revealed that the media from embryos from the pregnant group presented a higher signal intensity compared to that of the nonpregnant group; the ions 156.13 Da [M + H]+, 444.33 Da [M + H]+, and 305.97 Da [M + H]+ were identified as biomarkers. Spent culture medium from expanded blastocysts (Bx) that established pregnancy had a greater concentration of pyruvate (p = 0.0174) and lesser concentration of lactate (p = 0.042) than spent culture medium from Bx that did not establish pregnancy. Moreover, pyruvate in the culture media of Bx can predict pregnancy with 90.9% sensitivity and 75% specificity. In conclusion, we identified markers in the culture media that helped in assessing the most viable IVP embryos with a greater potential to establish pregnancy.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Prabhakar Singh ◽  
Syed Ibrahim Rizvi

Curcumin ((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the yellow biphenolic pigment isolated from turmeric (Curcuma longa), has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcuminin vitro(10−5 M to 10−8 M) andin vivo(340 and 170 mg/kg b.w., oral) on Na+/K+ATPase (NKA), Na+/H+exchanger (NHE) activity, and membrane lipid hydroperoxides (ROOH) in control and experimental oxidative stress erythrocytes of Wistar rats. As a result, we found that curcumin potently modulated the membrane transporters activity with protecting membrane lipids against hydro-peroxidation in control as well as oxidatively challenged erythrocytes evidenced by stimulation of NKA, downregulation of NHE, and reduction of ROOH in the membrane. The observed results corroborate membrane transporters activity with susceptibility of erythrocyte membrane towards oxidative damage. Results explain the protective mechanism of curcumin against oxidative stress mediated impairment in ions-transporters activity and health beneficial effects.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 413-422 ◽  
Author(s):  
Kelly Annes ◽  
Mateus José Sudano ◽  
Katia Roberta A. Belaz ◽  
Alessandra Tata ◽  
Vanessa Gonçalves Santos ◽  
...  

SummaryHuman embryo studies have proposed the use of additional morphological evaluations related to the moment of the first cell divisions as relevant to embryo viability. Nevertheless, there are still not enough data available related to morphokinetic analysis and its relationship with lipid composition in embryos. Therefore, the aim of this study was to address the lipid profile of bovine embryos with different developmental kinetics: fast (four or more cells) and slow (two or three cells) at 40 h post-insemination (hpi), at three time points of in vitro culture (40, 112 and 186 hpi) and compare these to profiles of in vivo embryos. The lipid profiles of embryos were analyzed by matrix-assisted laser desorption ionization mass spectrometry, which mainly detected pools of membrane lipids such as phosphatidylcholine and sphingomyelin. In addition to their structural function, these lipid classes have an important role in cell signalling, particularly regarding events such as stress and pregnancy. Different patterns of lipids in the fast and slow groups were revealed in all the analyzed stages. Also, differences between in vitro embryos were more pronounced at 112 hpi, a critical moment due to embryonic genome activation. At the blastocyst stage, in vitro-produced embryos, despite the kinetics, had a closer lipid profile when compared with in vivo blastocysts. In conclusion, the kinetics of development had a greater effect on the membrane lipid profiles throughout the embryo culture, especially at the 8–16-cell stage. The in vitro environment affects lipid composition and may compromise cell signalling and function in blastocysts.


2015 ◽  
Vol 24 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Ana Maria Passos-Castilho ◽  
Edson Lo Turco ◽  
Maria Lúcia Ferraz ◽  
Carla Matos ◽  
Ivonete Silva ◽  
...  

Background & Aims: Hepatitis C (HC) is a major cause of hepatocellular carcinoma (HCC), and a late diagnosis is the main factor for the poor survival of patients. There is an urgent need for identifying sensitive and specific biomarkers for HCC diagnosis. In the present study, plasma lipid patterns of patients with HC-HCC, HC-liver cirrhosis (LC), and chronic HC (CHC) were assessed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS).Methods. Plasma samples of 25 patients with HC-HCC, 15 patients with HC-LC, and 25 patients with CHC were evaluated by MALDI-MS using a Q-ToF premier (Synapt) mass spectrometer (Waters, Manchester, UK) equipped with a 200-Hz solid-state laser in the mass range between m/z (mass-to-charge ratio) of 700-1200.Results. A total of 2205 ions were initially obtained and 7 ions (m/z) were highlighted as corresponding to the most important lipids to differentiate HCC patients from LC and CHC patients. The specific lipidomic expression signature generated resulted in an overall predictive accuracy of 93% of HC-HCC and HC-LC, and 100% of HC-HCC and CHC. The 7-peak algorithm distinguished HCC from LC with a sensitivity of 96% and a specificity of 87%, and HCC from CHC with both sensitivity and specificity of 100%.Conclusion. MALDI-MS-specific signature peaks accurately distinguished patients with HC-HCC from those with HC-LC and CHC. The results indicate the potential of MALDI-MS and the selected peaks to improve HCC surveillance in patients with viral C cirrhosis and chronic hepatitis C.


2017 ◽  
Vol 63 (2) ◽  
pp. 86-99 ◽  
Author(s):  
Alessandra A. Vireque ◽  
Alessandra Tata ◽  
Katia Roberta A. Belaz ◽  
João Gabriel V. Grázia ◽  
Fábio N. Santos ◽  
...  

2018 ◽  
Vol 3 ◽  
pp. 126 ◽  
Author(s):  
Alvina G. Lai ◽  
Donall Forde ◽  
Wai Hoong Chang ◽  
Fang Yuan ◽  
Xiaodong Zhuang ◽  
...  

Background: Little is known about the impact of nutrients on cellular transcriptional responses, especially in face of environmental stressors such as oxygen deprivation. Hypoxia-inducible factors (HIF) coordinate the expression of genes essential for adaptation to oxygen-deprived environments. A second family of oxygen-sensing genes known as the alpha-ketoglutarate-dependent dioxygenases are also implicated in oxygen homeostasis and epigenetic regulation. The relationship between nutritional status and cellular response to hypoxia is understudied. In vitro cell culture systems frequently propagate cells in media that contains excess nutrients, and this may directly influence transcriptional response in hypoxia. Methods: We studied the effect of glucose and glutamine concentration on HepG2 hepatoma transcriptional response to low oxygen and expression of hypoxia inducible factor-1α (HIF-1α). Mass spectrometry confirmed low oxygen perturbation of dioxygenase transcripts resulted in changes in DNA methylation. Results: Under normoxic conditions, we observed a significant upregulation of both HIF-target genes and oxygen-dependent dioxygenases in HepG2 cells cultured with physiological levels of glucose or glutamine relative to regular DMEM media, demonstrating that excess glutamine/glucose can mask changes in gene expression. Under hypoxic conditions, CA9 was the most upregulated gene in physiological glutamine media while TETs and FTO dioxygenases were downregulated in physiological glucose. Hypoxic regulation of these transcripts did not associate with changes in HIF-1α protein expression. Downregulation of TETs suggests a potential for epigenetic modulation. Mass-spectrometry quantification of modified DNA bases confirmed our transcript data. Hypoxia resulted in decreased DNA hydroxymethylation, which correlated with TETs downregulation. Additionally, we observed that TET2 expression was significantly downregulated in patients with hepatocellular carcinoma, suggesting that tumour hypoxia may deregulate TET2 expression resulting in global changes in DNA hydroxymethylation.   Conclusion: Given the dramatic effects of nutrient availability on gene expression, future in vitro experiments should be aware of how excess levels of glutamine and glucose may perturb transcriptional responses.


Author(s):  
Hironori Tsuchiya ◽  
Maki Mizogami

Background: Although the mode of action of non-steroidal anti-inflammatory drugs (NSAIDs) has been exclusively referred to as inhibition of cyclooxygenase, their broad pharmacological and toxicological spectra are not necessarily interpreted by the direct interaction with such enzyme proteins. Aims: Since NSAIDs have the common amphiphilic structure, they have the possibility of acting on membrane-constituting lipids. In order to gain insights into the additional mechanism of NSAIDs, we reviewed their membrane interactivity to modify the physicochemical properties of membranes. Methodology: We retrieved scientific articles from PubMed/MEDLINE, Google Scholar and ACS Publications by searching databases from 1990 to 2019. Research papers published in English in the internationally recognized journals and on-line journals were cited with preference to more recent publications. Collected articles were reviewed by title, abstract and text for relevance. Results: Results of the literature search indicated that NSAIDs structure-specifically cause the in vitro and in vivo interactions with artificial and biological membranes to change membrane fluidity, lipid phase transition and permeability. The features and potencies of their membrane interactivity vary depending on drug concentration, medium pH and membrane lipid composition. In addition to membrane proteins, NSAIDs act on membrane lipids to exhibit the anti-inflammatory and anti-tumor activity by interacting with lipid bilayer membranes at relatively low concentrations to decrease membrane fluidity and thereby affect the enzymatic activity of membrane-associated proteins and to exhibit the gastrointestinal and cardiovascular toxicity by interacting with membranous phospholipids at relatively high concentrations to increase membrane fluidity and thereby impair the membrane-relevant biofunctions. Other diverse effects of NSAIDs may also be related to their membrane interactions. Conclusion: NSAIDs share the membrane interactivity common to them as one of possible pharmacological and toxicological mechanisms.            


2021 ◽  
Author(s):  
Kanade Tatsumi ◽  
Takukji Ichino ◽  
Natsumi Isaka ◽  
Akifumi Sugiyama ◽  
Yozo Okazaki ◽  
...  

Plants produce a large variety of lipophilic metabolites, many of which are secreted by cells and accumulated in apoplasts. The mechanism of secretion remains largely unknown, because hydrophobic metabolites, which may form oil droplets or crystals in cytosol, inducing cell death, cannot be directly secreted by transporters. Moreover, some secondary metabolic lipids react with cytosolic components leading to their decomposition. Lipophilic metabolites should thus be solubilized by matrix lipids and compartmentalized by membrane lipids. The mechanism of lipophilic metabolite secretion was assessed using shikonin, a red naphthoquinone lipid, in Lithospermum erythrorhizon. Cell secretion of shikonin also involved the secretion of about 30% of triacylglycerol (TAG), composed predominantly of saturated fatty acids. Shikonin production was associated with the induction of large amounts of the membrane lipid phosphatidylcholine. Together with in vitro reconstitution, these findings suggest a novel role for TAG as a matrix lipid for the secretion of lipophilic metabolites.


2013 ◽  
Vol 25 (1) ◽  
pp. 230
Author(s):  
A. Tata ◽  
D. Zampieri ◽  
J. L. Gonçalves ◽  
V. G. Santos ◽  
P. A. C. Braga ◽  
...  

Frozen bovine semen used in the IVF process can be a potential source of microorganisms that can prevent or disturb embryo development and cause issues with the sanitary certification for bovine embryo commercialization and export. Therefore, the aim of this work is to introduce a novel tool for the fast identification of the pathogens on the frozen semen based on the mass spectra of their ribosomal proteins analysed by matrix-assisted desorption/ionization-mass spectrometry (MALDI-MS). Thirty bovine semen samples, which were aliquots of commercial sealed straws used daily in the commercial IVF routine at In vitro Brasil Ltd. (Mogi Mirim, SP, Brazil), were used for this work. Fifty microlitres of semen were incubated in 10 mL of brain heart infusion broth (BHI) for 24 h at 37°C. If turbidity was observed, the bacterial cultures were submitted to bacterial extraction and mass spectrometric analysis according to Barreiro et al. (2010). The mass spectra were obtained using an AUTOFLEX MALDI TOF/TOF and were analysed with the database library MALDI Biotyper 3.0 software (Bruker Daltonik, Germany) at default settings. For each sample, the result was given by means of a log score with a maximum value of 3.0. In this study, only scores higher than 2.0 were considered, which provide confident species identification. The bacteria identified were Citrobacter freundii (2 samples), Stenotrophomonas maltophilia (4 samples), Enterobacter cloacae (6 samples) complex, Candida parapsilosis (2 samples), and Enterococcus mundtii (2 samples). Note that all the identified bacteria consistently match with the most common contaminants reported in literature for bovine frozen semen (Bielanskia et al. 2003). The capability of the technique to identify the bacteria without the ribosomal extraction (i.e. of bacteria pellets diluted in water and acetonitrile) was successful for the pellet of S. maltophilia, C. freundii, and E. cloacae complex with scores higher than 2.3, indicating a very high probability of the identification of the bacterial genus and the species. This can be explained by considering the capability of the mass spectrometric matrix to lyse the membrane of the bacteria and directly extract and then ionize the ribosomal proteins. In order to exclude the presence of a mixing of bacteria in the pellet, the colonies were properly isolated. The results matched with the ones obtained before the isolation. In order to confirm the MALDI-MS identification, the isolated bacteria from the bovine semen were also submitted to sequencing of region 16SrRNA. In conclusion, MALDI-MS technique was successfully applied for the identification of pathogens in the bovine semen. Experiments to evaluate the presence of microorganisms in media used for in vitro maturation, IVF, and in vitro culture of the bovine oocytes and embryos using this strategy are underway. This robust and fast approach is able to detect early contamination and allows prevention of economic losses and sanitary excellence in the bovine IVF process.


Sign in / Sign up

Export Citation Format

Share Document