scholarly journals Modulation Effects of Curcumin on Erythrocyte Ion-Transporter Activity

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Prabhakar Singh ◽  
Syed Ibrahim Rizvi

Curcumin ((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the yellow biphenolic pigment isolated from turmeric (Curcuma longa), has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcuminin vitro(10−5 M to 10−8 M) andin vivo(340 and 170 mg/kg b.w., oral) on Na+/K+ATPase (NKA), Na+/H+exchanger (NHE) activity, and membrane lipid hydroperoxides (ROOH) in control and experimental oxidative stress erythrocytes of Wistar rats. As a result, we found that curcumin potently modulated the membrane transporters activity with protecting membrane lipids against hydro-peroxidation in control as well as oxidatively challenged erythrocytes evidenced by stimulation of NKA, downregulation of NHE, and reduction of ROOH in the membrane. The observed results corroborate membrane transporters activity with susceptibility of erythrocyte membrane towards oxidative damage. Results explain the protective mechanism of curcumin against oxidative stress mediated impairment in ions-transporters activity and health beneficial effects.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2019 ◽  
Vol 133 (1) ◽  
pp. 117-134 ◽  
Author(s):  
Pamela L. Martín ◽  
Paula Ceccatto ◽  
María V. Razori ◽  
Daniel E.A. Francés ◽  
Sandra M.M. Arriaga ◽  
...  

Abstract We previously demonstrated in in vitro and ex vivo models that physiological concentrations of unconjugated bilirubin (BR) prevent oxidative stress (OS)-induced hepatocanalicular dysfunction and cholestasis. Here, we aimed to ascertain, in the whole rat, whether a similar cholestatic OS injury can be counteracted by heme oxygenase-1 (HO-1) induction that consequently elevates endogenous BR levels. This was achieved through the administration of hemin, an inducer of HO-1, the rate-limiting step in BR generation. We found that BR peaked between 6 and 8 h after hemin administration. During this time period, HO-1 induction fully prevented the pro-oxidant tert-butylhydroperoxide (tBuOOH)-induced drop in bile flow, and in the biliary excretion of bile salts and glutathione, the two main driving forces of bile flow; this was associated with preservation of the membrane localization of their respective canalicular transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), which are otherwise endocytosed by OS. HO-1 induction counteracted the oxidation of intracellular proteins and membrane lipids induced by tBuOOH, and fully prevented the increase in the oxidized-to-total glutathione (GSHt) ratio, a sensitive parameter of hepatocellular OS. Compensatory elevations of the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were also prevented. We conclude that in vivo HO-1 induction protects the liver from acute oxidative injury, thus preventing consequent cholestasis. This reveals an important role for the induction of HO-1 and the consequently elevated levels of BR in preserving biliary secretory function under OS conditions, thus representing a novel therapeutic tool to limit the cholestatic injury that bears an oxidative background.


2018 ◽  
Vol 17 (4) ◽  
pp. 1235-1246 ◽  
Author(s):  
Abdelnaser A. Badawy ◽  
Mohammed A. El-Magd ◽  
Sana A. AlSadrah

Background/Objectives: In the Middle East, people consume camel milk regularly as it is believed to improve immunity against diseases and decrease the risk for cancer. Recently, it was noted that most of the beneficial effects of milk come from their nanoparticles, especially exosomes. Herein, we evaluated the anticancer potential of camel milk and its exosomes on MCF7 breast cancer cells (in vitro and in vivo) and investigated the possible underlying molecular mechanism of action. Methods/Results: Administration of camel milk (orally) and its exosomes (orally and by local injection) decreased breast tumor progression as evident by ( a) higher apoptosis (indicated by higher DNA fragmentation, caspase-3 activity, Bax gene expression, and lower Bcl2 gene expression), ( b) remarkable inhibition of oxidative stress (decrease in MDA levels and iNOS gene expression); ( c) induction of antioxidant status (increased activities of SOD, CAT, and GPX), ( d) notable reduction in expression of inflammation-( IL1b, NFκB), angiogenesis-( VEGF) and metastasis-( MMP9, ICAM1) related genes; and ( e) higher immune response (high number of CD+4, CD+8, NK1.1 T cells in spleen). Conclusions: Overall, administration of camel milk–derived exosomes showed better anticancer effect, but less immune response, than treatment by camel milk. Moreover, local injection of exosomes led to better improvement than oral administration. These findings suggest that camel milk and its exosomes have anticancer effect possibly through induction of apoptosis and inhibition of oxidative stress, inflammation, angiogenesis and metastasis in the tumor microenvironment. Thus, camel milk and its exosomes could be used as an anticancer agent for cancer treatment.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1106
Author(s):  
Natasha Rios Leite ◽  
Laura Costa Alves de Araújo ◽  
Paola dos Santos da Rocha ◽  
Danielle Araujo Agarrayua ◽  
Daiana Silva Ávila ◽  
...  

Fruits are sources of bioactive compounds that are responsible for several biological activities. Therefore, this study aimed to identify the chemical composition of the pulp of the Brazilian Savanna fruit Dipteryx alata; evaluate its toxic effects, influence on the life expectancy of the nematode Caenorhabditis elegans, and its antioxidant activities in vitro and in vivo; and describe the mechanisms involved. The chemical compounds identified include phenols, terpenes, fatty acid derivatives, vitamins, and a carboxylic acid. The in vitro antioxidant activity was demonstrated by radical scavenging methods. in vivo, the D. alata fruit pulp was not toxic and promoted resistance to oxidative stress in nematodes exposed to a chemical oxidizing agent. Furthermore, it promoted an increased life expectancy in wild-type nematodes and increased the expression of superoxide dismutase and the nuclear translocation of DAF-16. These results suggest that the beneficial effects identified are related to these two genes, which are involved in the regulation of metabolic activities, the control of oxidative stress, and the lifespan of C. elegans. These beneficial effects, which may be related to its chemical constituents, demonstrate its potential use as a functional and/or nutraceutical food.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Monika A. Olszewska ◽  
Joanna Kolodziejczyk-Czepas ◽  
Magdalena Rutkowska ◽  
Anna Magiera ◽  
Piotr Michel ◽  
...  

Polyphenol-rich plant extracts might alleviate the negative impact of oxidative stress and inflammation, but careful phytochemical standardisation and evaluation of various mechanisms are required to fully understand their effects. In this context, flower extracts of Sorbus aucuparia L.—a traditional medicinal plant—were investigated in the present work. The LC-MS/MS profiling of the extracts, obtained by fractionated extraction, led to the identification of 66 constituents, mostly flavonols (quercetin and sexangularetin glycosides with dominating isoquercitrin), pseudodepsides of quinic and shikimic acids (prevailing isomers of chlorogenic acid and cynarin), and flavanols (catechins and proanthocyanidins). Minor extract components of possible chemotaxonomic value were flavalignans (cinchonain I isomers) and phenylamides (spermidine derivatives). As assessed by HPLC-PDA and UV-spectrophotometric studies, the extracts were polyphenol-abundant, with the contents up to 597.6 mg/g dry weight (dw), 333.9 mg/g dw, 382.0 mg/g dw, and 169.0 mg/g dw of total phenolics, flavonoids, proanthocyanidins, and caffeoylquinic acids, respectively. Their biological in vitro effects were phenolic-dependent and the strongest for diethyl ether, ethyl acetate, and n-butanol fractions of the methanol-water (7 : 3, v/v) extract. The extracts showed significant, concentration-dependent ability to scavenge in vivo-relevant radical/oxidant agents (O2∙−, OH∙, H2O2, ONOO–, NO∙, and HClO) with the strongest effects towards OH∙, ONOO–, HClO, and O2∙− (compared to ascorbic acid). Moreover, the extracts efficiently inhibited lipoxygenase and hyaluronidase (compared to indomethacin) but were inactive towards xanthine oxidase. At in vivo-relevant levels (1-5 μg/mL), they also effectively protected human plasma components (proteins and lipids) against ONOO–-induced oxidative damage (reduced the levels of 3-nitrotyrosine, lipid hydroperoxides, and thiobarbituric acid-reactive substances) and normalised/enhanced the total nonenzymatic antioxidant capacity of plasma. In cytotoxicity tests, the extracts did not affect the viability of human PBMCs and might be regarded as safe. The results support the application of the extracts in the treatment of oxidative stress-related pathologies cross-linked with inflammatory changes.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Zhai ◽  
Wei Xu ◽  
Yayun Liu ◽  
Kun Qian ◽  
Yanling Xiong ◽  
...  

Background. Honokiol (HNK) has been reported to possess various beneficial effects in the context of metabolic disorders, including fatty liver, insulin resistance, and oxidative stress which are closely related to nonalcoholic steatohepatitis (NASH), however with no particular reference to CFLAR or JNK. Methods. C57BL/6 mice were fed methionine-choline-deficient (MCD) diet and administered simultaneously with HNK (10 and 20 mg/kg once a day, ig) for 6 weeks, and NCTC1469 cells were pretreated, respectively, by oleic acid (OA, 0.5 mmol/L) plus palmitic acid (PA, 0.25 mmol/L) for 24 h, and adenovirus-down Cflar for 24 h, then exposed to HNK (10 and 20 μmol/L) for 24 h. Commercial kits, H&E, MT, ORO staining, RT-qPCR, and Western blotting were used to detect the biomarkers, hepatic histological changes, and the expression of key genes involved in NASH. Results. The in vivo results showed that HNK suppressed the phosphorylation of JNK (pJNK) by activating CFLAR; enhanced the mRNA expression of lipid metabolism-related genes Acox, Cpt1α, Fabp5, Gpat, Mttp, Pparα, and Scd-1; and decreased the levels of hepatic TG, TC, and MDA, as well as the levels of serum ALT and AST. Additionally, HNK enhanced the protein expression of oxidative stress-related key regulatory gene NRF2 and the activities of antioxidases HO-1, CAT, and GSH-Px and decreased the protein levels of prooxidases CYP4A and CYP2E1. The in vivo effects of HNK on the expression of CLFAR, pJNK, and NRF2 were proved by the in vitro experiments. Moreover, HNK promoted the phosphorylation of IRS1 (pIRS1) in both tested cells and increased the uptake of fluorescent glucose 2-NBDG in OA- and PA-pretreated cells. Conclusions. HNK ameliorated NASH mainly by activating the CFLAR-JNK pathway, which not only alleviated fat deposition by promoting the efflux and β-oxidation of fatty acids in the liver but also attenuated hepatic oxidative damage and insulin resistance by upregulating the expression of NRF2 and pIRS1.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fujie Yan ◽  
Yushu Chen ◽  
Ramila Azat ◽  
Xiaodong Zheng

Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.


2019 ◽  
Vol 73 ◽  
pp. 182-188
Author(s):  
Sabina Galiniak ◽  
Marek Biesiadecki ◽  
Bożena Czubat ◽  
Dorota Bartusik-Aebisher

Curcumin, a compound belonging to the group of polyphenols with a characteristic yellow-orange color, is the most active ingredient of the long-leaved Curcuma longa L. and the ingredient of seasoning mixes, including curry spices. Due to its antioxidant, anti-inflammatory and anti-cancer properties, it has a wide range of therapeutic effects and has been studied for many years. Curcumin has enormous potential in preventing many diseases due to the widely described benefits of its use, it is non-toxic and additionally. Therapy with curcumin is low cost. Currently, many studies focus on the anti-glycation activity of curcumin, which could be used as an active inhibitor of glycation, i.e. a non-enzymatic process of combining a keto or aldehyde group of sugar with a free amino group of a protein. Finally, heterogeneous end products of advanced glycation are formed in the multistage and complicated glycation reaction. Formation of glycation products is intensified with age, as well as in various disease states, including diabetes or neurodegenerative diseases. Many literature data describe the role of curcumin in the prevention and treatment of diabetes. It is known that polyphenol has beneficial effects on hyperglycemia, insulin resistance and regeneration of secretory cells of pancreatic islets. It seems that addition of curcumin, the main ingredient of curry spice, to food could help people prevent the development of lifestyle diseases, including diabetes and its complications. The article presents the current state of knowledge on the curcumin anti-glycation properties in vitro as well as in vivo.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4176 ◽  
Author(s):  
Sonjit Das ◽  
Saikat Dewanjee ◽  
Tarun K. Dua ◽  
Swarnalata Joardar ◽  
Pratik Chakraborty ◽  
...  

Cadmium (Cd) imparts nephrotoxicity via triggering oxidative stress and pathological signal transductions in renal cells. The present study was performed to explore the protective mechanism of carnosic acid (CA), a naturally occurring antioxidant compound, against cadmium chloride (CdCl2)-provoked nephrotoxicity employing suitable in vitro and in vivo assays. CA (5 µM) exhibited an anti-apoptotic effect against CdCl2 (40 µM) in normal kidney epithelial (NKE) cells evidenced from cell viability, image, and flow cytometry assays. In this study, CdCl2 treatment enhanced oxidative stress by triggering free radical production, suppressing the endogenous redox defence system, and inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) activation in NKE cells and mouse kidneys. Moreover, CdCl2 treatment significantly endorsed apoptosis and fibrosis via activation of apoptotic and transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog (Smad)/collagen IV signalling pathways, respectively. In contrast, CA treatment significantly attenuated Cd-provoked nephrotoxicity via inhibiting free radicals, endorsing redox defence, suppressing apoptosis, and inhibiting fibrosis in renal cells in both in vitro and in vivo systems. In addition, CA treatment significantly (p < 0.05–0.01) restored blood and urine parameters to near-normal levels in mice. Histological findings further confirmed the protective role of CA against Cd-mediated nephrotoxicity. Molecular docking predicted possible interactions between CA and Nrf2/TGF-β1/Smad/collagen IV. Hence, CA was found to be a potential therapeutic agent to treat Cd-mediated nephrotoxicity.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1064
Author(s):  
Alessandro G. Fois ◽  
Elisabetta Sotgiu ◽  
Valentina Scano ◽  
Silvia Negri ◽  
Sabrina Mellino ◽  
...  

Introduction: In vitro evidence suggests that pirfenidone and nintedanib, approved agents for the treatment of idiopathic pulmonary fibrosis (IPF), exert anti-inflammatory and anti-oxidant effects. We aimed to investigate such effects in vivo in IPF patients. Methods: Systemic circulating markers of oxidative stress [nuclear factor erythroid 2–related factor 2 (Nrf2), thiobarbituric acid- reactive substances (TBARS), homocysteine (Hcy), cysteine (Cys), asymmetric dimethylarginine (ADMA) and ADMA/Arginine ratio, glutathione (GSH), plasma protein –SH (PSH), and taurine (Tau)] and inflammation [Kynurenine (Kyn), Tryptophan (Trp) and Kyn/Trp ratio] were measured at baseline and after 24-week treatment in 18 IPF patients (10 treated with pirfenidone and 8 with nintedanib) and in 18 age- and sex-matched healthy controls. Results: Compared to controls, IPF patients had significantly lower concentrations of reduced blood GSH (457 ± 73 µmol/L vs 880 ± 212 µmol/L, p < 0.001) and plasma PSH (4.24 ± 0.95 µmol/g prot vs 5.28 ± 1.35 µmol/g prot, p = 0.012). Pirfenidone treatment significantly decreased the Kyn/Trp ratio (0.030 ± 0.011 baseline vs 0.025 ± 0.010 post-treatment, p = 0.048) whilst nintedanib treatment significantly increased blood GSH (486 ± 70 μmol/L vs 723 ± 194 μmol/L, p = 0.006) and reduced ADMA concentrations (0.501 ± 0.094 vs. 0.468 ± 0.071 μmol/L, p = 0.024). Conclusion: pirfenidone and nintedanib exert beneficial effects on specific markers of oxidative stress and inflammation in IPF patients.


Sign in / Sign up

Export Citation Format

Share Document