Temporal expression of pluripotency-associated transcription factors in sheep and cattle preimplantation embryos

Zygote ◽  
2018 ◽  
Vol 26 (4) ◽  
pp. 270-278 ◽  
Author(s):  
P.G.C. Silva ◽  
M.T. Moura ◽  
R.L.O. Silva ◽  
P.S. Nascimento ◽  
J.B. Silva ◽  
...  

SummaryPluripotency-associated transcription factors (PATFs) modulate gene expression during early mammalian embryogenesis. Despite a strong understanding of PATFs during mouse embryogenesis, limited progress has been made in ruminants. This work aimed to describe the temporal expression of eight PATFs during both sheep and cattle preimplantation development. Transcript availability of PATFs was evaluated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in eggs, cleavage-stage embryos, morulae, and blastocysts. Transcripts of five genes were detected in all developmental stages of both species (KLF5, OCT4, RONIN, ZFP281, and ZFX). Furthermore, CMYC was detected in all cattle samples but was found from cleavage-stage onwards in sheep. In contrast, NR0B1 was detected in all sheep samples but was not detected in cattle morulae. GLIS1 displayed the most significant variation in temporal expression between species, as this PATF was only detected in cattle eggs and sheep cleavage-stage embryos and blastocysts. In silico analysis suggested that cattle and sheep PATFs share similar size, isometric point and molecular weight. A phenetic analysis showed two patterns of PATF clustering between cattle and sheep, among several mammalian species. In conclusion, the temporal expression of pluripotency-associated transcription factors differs between sheep and cattle, suggesting species-specific regulation during preimplantation development.

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Shutong Fan ◽  
Xixi Li ◽  
Siyu Lin ◽  
Yunpeng Li ◽  
Huixin Ma ◽  
...  

Foxl2 is an evolutionarily conserved female sex gene, which is specifically expressed in the ovary and mainly involved in oogenesis and ovarian function maintenance. However, little is known about the mechanism that regulates Foxl2 specific expression during the ovary development. In the present study, we constructed the gonadal yeast one-hybrid (Y1H) library of Chlamysfarreri with ovaries and testes at different developmental stages using the Gateway technology. The library capacity was more than 1.36 × 107 CFU, and the length of the inserted fragment was 0.75 Kb~2 Kb, which fully met the demand of yeast library screening. The highly transcriptional activity promoter sequence of C. farreri Foxl2 (Cf-Foxl2) was determined at −1000~−616 bp by dual-luciferase reporter (DLR) assay and was used as bait to screen possible transcription factors from the Y1H library. Eleven candidate factors, including five unannotated factors, were selected based on Y1H as well as their expressional differences between ovaries and testes and were verified for the first time to be involved in the transcriptional regulation of Cf-Foxl2 by RT-qPCR and DLR. Our findings provided valuable data for further studying the specific regulation mechanism of Foxl2 in the ovary.


2017 ◽  
Vol 11 (2) ◽  
pp. 145 ◽  
Author(s):  
Marcelo Tigre Moura ◽  
Pamela Ramos-Deus ◽  
José Carlos Ferreira-Silva ◽  
Priscila Germany Corrêa Silva ◽  
Ludymila Furtado Cantanhêde ◽  
...  

The expression of a subset of transcription factors is enriched in early preimplantation embryos, which contributes to their cellular plasticity. RONIN, NANOG and its associated proteins are PluripotencyAssociated Transcription Factors (PATF) that control relevant downstream pathways in pluripotent stem cells, but their activity in early embryos remained less understood. The work was aimed to determine the expression of RONIN and four NANOG-associated PATFs in goat preimplantation embryos. Goat embryos were produced in vitro by parthenogenetic activation. Gene transcripts of cleavage-stage embryos were investigated by reverse transcriptase-polymerase chain reaction (RT-PCR), while blastocysts were analyzed by both RTPCR and quantitative RT-PCR (RT-qPCR) assays. Gene transcripts of ZFP281, NAC1, and NR0B1 were detected in cleavage-stage embryos, while RONIN and OCT4 were not found expressed. Detection in blastocysts by RT-PCR confirmed the activity of NR0B1, RONIN, and OCT4. Moreover, all five PATF were detected in blastocysts by RT-qPCR (ZFP281, NAC1, RONIN, OCT4, and NR0B1). In conclusion, RONIN and NANOG-associated proteins are active during goat parthenogenetic preimplantation development and hold stage-specific expression patterns.


2020 ◽  
Vol 32 (7) ◽  
pp. 714
Author(s):  
Yunsheng Li ◽  
Jiangwen Sun ◽  
Yinghui Ling ◽  
Hao Ming ◽  
Zhen Chen ◽  
...  

RNA sequencing performed on goat matured oocytes and preimplantation embryos generated invivo enabled us to define the transcriptome for goat preimplantation embryo development. The largest proportion of changes in gene expression in goat was found at the 16-cell stage, not as previously defined at the 8-cell stage, and is later than in other mammalian species. In all, 6482 genes were identified to be significantly differentially expressed across all consecutive developmental stage comparisons, and the important signalling pathways involved in each development transition were determined. In addition, we identified genes that appear to be transcribed only at a specific stage of development. Using weighted gene coexpression network analysis, we found nine stage-specific modules of coexpressed genes that represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the goat transcriptional networks. Their association with other embryo genes suggests that they may have important regulatory roles in embryo development. Our cross-mammalian species transcriptomic comparisons demonstrate both conserved and goat-specific features of preimplantation development.


2019 ◽  
Author(s):  
Weida Lin ◽  
Huanwei Chen ◽  
Jianmei Wang ◽  
Yongli Zhen ◽  
Qiuwei Lu ◽  
...  

Abstract Background: Cyclocarya paliurus (Batal.) Iljinskaja is a common endemic tree species. The leaves of C. paliurus are used as a Chinese medicine and the main active components are polysaccharides. However, the temporal pattern of polysaccharide synthesis at different leaf developmental stages has not been reported to date. Results: With the development of leaves, the content of polysaccharides increased first and the highest content was found at the F3 stage (the third larger full expanded leaf). A total of 499710194 clean reads were obtained using C. paliurus genomic data and were assembled into 296593 unigenes. Among 4708 identified DEGs, 429 DEGs were up-regulated and 451 DEGs were down-regulated from F1 stage (the smallest full expanded leaf) to F2 stage (the second larger full expanded leaf), 630 DEGs were up-regulated and 60 DEGs were down-regulated from F2 stage to F3 stage, and 1833 up-regulated and 1816 down-regulated DEGs from F3 stage to F4 stage. Forty DEGs associated with GT belong to 13 GT families. Among them, only one gene was down-regulated from F1 stage to F2 stage, two genes were down-regulated from F2 to F3 stages, and 23 genes were down-regulated and 15 genes were up-regulated from F3 stage to F4 stage, respectively. A significant correlation exists between the five unigenes and the polysaccharide content. UDP-glucose 4-epimerase gene was significantly positively correlated with the polysaccharide content. A pathway map for the biosynthesis of C. paliurus polysaccharide was proposed. Among 150 transcription factors identified from DEGs, the majority was members of the AP2/ERF family (21, 14%), followed by the C2H2 family (14, 9.33%), the MYB family (12, 8%), the C2C2-GATA family (10, 6.67%), the GRAS family (9, 6%), and the zf-HD family (7, 4.67%). Conclusions: These results identified genes involved in the biosynthesis of Cyclocarya paliurus polysaccharides during different leaf developmental stages and provided evidence for the change of polysaccharide content during the development of C. paliurus leaves. Possible synthetic pathways and related transcription factors were suggested. This study provides information for the screening of polysaccharide biosynthesis related genes and elucidates the mechanism underlying polysaccharide biosynthesis in C. paliurus.


Zygote ◽  
2020 ◽  
Vol 28 (5) ◽  
pp. 432-439
Author(s):  
Pábola Santos Nascimento ◽  
Marcelo Tigre Moura ◽  
Roberta Lane Oliveira Silva ◽  
Pamela Ramos-Deus ◽  
José Carlos Ferreira-Silva ◽  
...  

SummaryHousekeeping genes (HKG) are paramount for accurate gene expression analysis during preimplantation development. Markedly, quantitative reverse transcription polymerase chain reaction (RT-qPCR) in ovine embryos currently lacks HKGs. Therefore, we tested 11 HKGs for RT-qPCR normalization during ovine parthenogenetic preimplantation development. Seven HKGs reached the qPCR efficiency threshold (97.20–105.96%), with correlation coefficients ranging from −0.922 to −0.998 and slopes from −3.22 to −3.59. GeNorm ranked glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and TATA-binding protein (TBP) as the best HKG pair, while H3 histone, family 3A (H3F3A) was the third HKG. Relative gene expression was measured for zinc finger protein X-linked (ZFX) and developmental pluripotency-associated 3 (DPPA3) transcripts during ovine parthenogenetic preimplantation development. ZFX did not show any transcript abundance fluctuation among oocytes, cleavage-stage embryos, and morulae. DPPA3 transcript abundance was also similar among all developmental stages, therefore suggesting that it may not display a maternal gene expression profile. In silico analysis of ovine DPPA3 mRNA and protein showed high conservation to bovine orthologues. However, DPPA3 orthologues differed in regulatory motifs. In conclusion, GAPDH, TBP and H3F3A are stable HKGs in ovine parthenogenetic embryos and allow accurate RT-qPCR-based gene expression analysis.


2004 ◽  
Vol 16 (9) ◽  
pp. 236 ◽  
Author(s):  
S. Jansen ◽  
M. Pantaleon ◽  
P. Kaye

During preimplantation development mouse embryos demonstrate a switch in substrate preference. Pyruvate consumption, high during the first few cleavage stages, declines as the morula develops to a blastocyst, when glucose becomes the preferred substrate. Whilst pyruvate utilisation has been well characterised, changes in the function and expression of pyruvate transporters during this crucial period remain unclear. Pyruvate, lactate and other monocarboxylates are transported across mammalian cell membranes via a specific H+-monocarboxylate cotransporter (MCT). Fourteen members of this family have been identified of which MCT1, MCT2 and MCT4 are well characterised. Although mRNA expression profiles are known during early mouse development (1,2), the specific roles of each protein isoform are unknown. In order to understand these, the expression pattern for each isoform and their cellular localisation during preimplantation development have been determined. Mouse embryos were freshly collected from superovulated Quackenbush mice at 24, 48, 72 and 96 h post-hCG and expression of MCT1, MCT2 and MCT4 analysed by confocal laser scanning immunohistochemistry. Our results confirm that all three MCT proteins are expressed in preimplantation embryos. Immunoreactivity for MCT1 and MCT2 appears diffuse throughout the cytoplasm of cleavage stage embryos. As development proceeds, MCT1 localised to the basolateral membranes of morulae and blastocysts, whilst stronger MCT2 expression was found on the apical trophectoderm as well as the inner cell mass. MCT4 immunoreactivity on the other hand is apparent at cell-cell contact sites in cleavage stage embryos and morulae, but it is not apparent in the blastocyst. The demonstration of different expression patterns for MCT1, MCT2 and MCT4 in mouse embryos implies specific functional roles for each in the critical regulation of H+, pyruvate and lactate transport during preimplantation development. (1) Harding EA, Day ML, Gibb CA, Johnson MH, Cook DI (1999) The activity of the H+-monocarboxylate cotransporter during pre-implantation development in the mouse. Eur. J. Physiol. 438, 397–404. (2) H�rubel F, El Mouatassim S, Gu�rin P, Frydman R, M�n�zo Y (2002) Genetic expression of monocarboxylate transporters during human and murine oocyte maturation and early embryonic development. Zygote 10, 175–181.


Author(s):  
Valeria Merico ◽  
Silvia Garagna ◽  
Maurizio Zuccotti

The presence of cumulus cells (CCs) surrounding ovulated eggs is beneficial to in vitro fertilization and preimplantation development outcomes in several mammalian species. In the mouse, this contribution has a negligible effect on the fertilization rate; however, it is not yet clear whether it has positive effects on preimplantation development. Here, we compared the rates of in vitro fertilization and preimplantation development of ovulated B6C3F1 CC-enclosed vs. CC-free eggs, the latter obtained either after a 5 min treatment in M2 medium containing hyaluronidase or after 5–25 min in M2 medium supplemented with 34.2 mM EDTA (M2-EDTA). We found that, although the maintenance of CCs around ovulated eggs does not increment their developmental rate to blastocyst, the quality of the latter is significantly enhanced. Most importantly, for the first time, we describe a further quantitative and qualitative improvement, on preimplantation development, when CC-enclosed eggs are isolated from the oviducts in M2-EDTA and left in this medium for a total of 5 min prior to sperm insemination. Altogether, our results establish an important advancement in mouse IVF procedures that would be now interesting to test on other mammalian species.


2010 ◽  
Vol 27 (8) ◽  
pp. 1509-1531 ◽  
Author(s):  
Zohar Ben-Moshe ◽  
Gad Vatine ◽  
Shahar Alon ◽  
Adi Tovin ◽  
Philipp Mracek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document