Blastocyst collapse as an embryo marker of low implantation potential: a time-lapse multicentre study

Zygote ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 139-147
Author(s):  
Romualdo Sciorio ◽  
Raquel Herrer Saura ◽  
K. Joo Thong ◽  
Marga Esbert Algam ◽  
Susan Jane Pickering ◽  
...  

SummarySpontaneous blastocyst collapse during in vitro embryo development has been suggested as a novel marker of embryo quality. Therefore, the aim of this multicentre study was to carry out a retrospective multicentre analysis to investigate the correlation between blastocyst collapse and pregnancy outcome. Here, 1297 intracytoplasmic sperm injection (ICSI)/in vitro fertilization (IVF) fresh cycles, with an elective single blastocyst transfer (eSET) were included in this study. Embryos were cultured individually in 6.0% CO2, 5.0% O2, 89.0% N2, using single step medium (GTLTM VitroLife, Sweden) or sequential medium (CookTM, Cook Medical, Australia) and selected for transfer using standard morphological criteria. With the use of time-lapse monitoring (TLM), blastocysts were analyzed by measuring the maximum volume reduction and defined as having collapsed, if there was ≥ 50% volume reduction from the expanded blastocyst and the collapse event. Following embryo replacement, each blastocyst was retrospectively allocated to one of two groups (collapsed or not collapsed). Here, 259 blastocysts collapsed once or more during development (19.9%) and the remaining 1038 either contracted minimally or not collapsed (80.1%). A significantly higher ongoing pregnancy rate (OPR) of 51.9% (95% CI 48.9–59.9%) was observed when blastocysts that had not collapsed were replaced compared with cycles in which collapsed blastocysts were transferred 37.5% (95% CI 31.6–43.4%). This study suggests that human blastocysts that collapse spontaneously during development are less likely to implant and generate a pregnancy compared with embryos that do not. Although this is a retrospective study, the results demonstrated the utility of collapse episodes as new marker of embryo selection following eSET at blastocyst stage.

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 748
Author(s):  
Joanna Kochan ◽  
Agnieszka Nowak ◽  
Barbara Kij ◽  
Sylwia Prochowska ◽  
Wojciech Niżański

The aim of this study was to analyze the morphokinetic parameters of feline embryos using a time lapse system. Oocytes matured in vitro were fertilized (IVF) and in vitro cultured in a time lapse-system (Primo Vision®, Gothenburg, Sweden). The first cell division of embryos occurred between 17 h post insemination (hpi) and 38 hpi, with the highest proportion of embryos (46%) cleaving between 21 and 24 hpi. The timing of the first cleavage significantly affected further embryo development, with the highest development occurring in embryos that cleaved at 21–22 hpi. Embryos that cleaved very early (17–18 hpi) developed poorly to the blastocyst stage (2%) and none of the embryos that cleaved later than 27 hpi were able to reach the blastocyst stage. Morphological defects were observed in 48% of the embryos. There were no statistically significant differences between the timing intervals of the first cleavage division and the frequency of morphological defects in embryos. Multiple (MUL) morphological defects were detected in more than half (56%) of the abnormal embryos. The most frequent single morphological defects were cytoplasmic fragmentation (FR) (8%) and blastomere asymmetry (AS) (6%). Direct cleavage (DC) from 1–3 or 3–5 blastomeres, reverse cleavage (RC) and vacuoles were rarely observed (2–3%). The timing of blastocyst cavity formation is a very good indicator of embryo quality. In our study, blastocyst cavity formation occurred between 127–167 hpi, with the highest frequency of hatching observed in blastocysts that cavitated between 142–150 hpi. Blastocysts in which cavitation began after 161 h did not hatch. In conclusion, the timing of the first and second cleavage divisions, the timing of blastocyst cavity formation and morphological anomalies can all be used as early and non-invasive indicators of cat embryo development in vitro.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
B Carrasc. Canal ◽  
M C Pons ◽  
M Parriego ◽  
M Boada ◽  
S García ◽  
...  

Abstract Study question Is there any imbalance in the sex ratio (SR) and in the aneuploidy rate of male and female human blastocysts from a PGT-A programme? Summary answer Although SR in human blastocysts is significantly male-biased, more aneuploidies are observed among male blastocysts, resulting in comparable euploid male and female embryos available. What is known already More boys than girls are born worldwide, meaning that the SR at birth is biased towards males. Differences in the SR of children born after ART have been also reported. Factors such as the insemination technique or the day of embryo transfer have been shown to be related to the SR at birth, but whether the SR is shifted during the preimplantation and/or postimplantation development remains unknown. Study design, size, duration: Embryos from patients undergoing 921 PGT-A cycles from September 2017 to February 2020 were included in the study. Data from the chromosomal constitution of 2637 biopsied blastocysts was retrospectively analysed. Participants/materials, setting, methods Embryos were cultured in time-lapse incubators with low oxygen tension (5%) (Embryoscope®; Geri®) using single-step medium (Global®, LifeGlobal®; GTL™, Vitrolife). Blastocyst biopsy was performed between D5-D7 followed by immediate vitrification (Cryotop®, Kitazato). Trophectoderm samples were analysed by NGS. Embryos were categorized as euploid, aneuploid or mosaic. Embryos were called as mosaic when the deviation from the normal copy number was ≥30% and <70%. Main results and the role of chance Overall biopsies from 2637 blastocysts were analysed, 1320 on day 5 (50.1%), 1169 on day 6 (44.3%) and 148 on day 7 (5.6%). Sex distribution among the embryos analysed was skewed in favor of male sex with 1401 diagnosed as male (53.1%) and 1236 were female (46.9%), [OR (95%CI):1.13(1.05–1.22)]. As a consequence of this biased SR, more male embryos reached the blastocyst stage and were biopsied both on day 5/6 (708/1320, 53.6% on day 5 and 619/1169, 53% on day 6). Embryos biopsied on day 7 were balanced between sexes with 50% being male and 50% being female. Following biopsy and PGT-A, 1086 (41.2%) of the embryos were classified as euploid, 1349 (51.16%) as aneuploid, and 202 (7.7%) as mosaic embryos. More chromosomal anomalies were observed among male blastocysts when compared to the female ones, 738 (52.7%) vs 611 (49.4%). Similarly, mosaicism was more frequents in male as compared with female blastocysts, 123 (8.8%) vs 79 (6.4%). (P = 0.000). As more aneuploidies are observed among male blastocysts, the final number of available euploid blastocysts for embryo transfer was comparable between sexes (540 male/546 female), [OR (95%CI): 0.99 (0.87–1.11)]. Limitations, reasons for caution This is a retrospective study. Only embryos at the blastocyst stage have been analyzed. Potential confounding factors such as sperm quality or the female age have not been analyzed. No data regarding the SR at birth have been analyzed in these study. Wider implications of the findings: In our study, more male embryos develop to the blastocyst when compared to female ones. It can be hypothesized that female embryos can be more affected by an early arrest at cleavage stages. SR at birth would be expected to be similar as more aneuploidy is observed in male embryos. Trial registration number Not applicable


2019 ◽  
Vol 31 (12) ◽  
pp. 1862 ◽  
Author(s):  
N. A. Martino ◽  
G. Marzano ◽  
A. Mastrorocco ◽  
G. M. Lacalandra ◽  
L. Vincenti ◽  
...  

Time-lapse imaging was used to establish the morphokinetics of equine embryo development to the blastocyst stage after invitro oocyte maturation (IVM), intracytoplasmic sperm injection (ICSI) and embryo culture, in oocytes held overnight at room temperature (22–27°C; standard conditions) before IVM. Embryos that developed to the blastocyst stage underwent precleavage cytoplasmic extrusion and cleavage to the 2-, 3- and 4-cell stages significantly earlier than did embryos that arrested in development. We then determined the rate of blastocyst formation after ICSI in oocytes held for 2 days at either 15°C or room temperature before IVM (15-2d and RT-2d treatment groups respectively). The blastocyst development rate was significantly higher in the 15-2d than in the RT-2d group (13% vs 0% respectively). The failure of blastocyst development in the RT-2d group precluded comparison of morphokinetics of blastocyst development between treatments. In any condition examined, development to the blastocyst stage was characterised by earlier cytoplasmic extrusion before cleavage, earlier cleavage to 2- and 4-cell stages and reduced duration at the 2-cell stage compared with non-competent embryos. In conclusion, this study presents morphokinetic parameters predictive of embryo development invitro to the blastocyst stage after ICSI in the horse. We conclude that time-lapse imaging allows increased precision for evaluating effects of different treatments on equine embryo development.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
G. Ferri ◽  
M. Musto ◽  
G. Colombo ◽  
V. M. Savasi

We report a case of a 43-year-old patient with a monochorionic triamniotic triplet pregnancy after IVF with donor oocytes. After failed IVF attempts, the patient chose to undergo treatment with donor oocytes. Her 22-year-old oocyte donor underwent standard controlled ovarian hyperstimulation. The retrieved oocytes were fertilized in vitro, and one embryo was transferred at the blastocyst stage. At 6 weeks and 5 days of gestation, an ultrasound revealed monochorionic triamniotic (MCTA) triplets. The risk of monozygotic twinning in women undergoing in vitro fertilization (IVF) is reported to be higher than that in natural conception, although the causes of the phenomenon have not yet been clarified. Efforts still must be made in order to prevent monozygotic multiple pregnancies, associated with much greater chances of obstetric and perinatal morbidity and mortality.


Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Barbara Kij ◽  
Joanna Kochan ◽  
Agnieszka Nowak ◽  
Wojciech Niżański ◽  
Sylwia Prochowska ◽  
...  

Some human, bovine, and mouse in vitro fertilized (IVF) embryos with morphokinetic abnormalities such as fragmentation, direct cleavage, and cytoplasmic vacuoles have the potential to reach the blastocyst stage, which is related to a high potential for implantation. The latest techniques of embryo development observation to enable the evaluation and selection of embryos are based on time lapse monitoring (TLM). The aim of this study was to determine the frequency of morphological defects in feline embryos, their competence to reach the blastocyst stage, and their ability to hatch. Oocyte-cumulus complexes were isolated after the scarification of ovaries and matured in vitro. Matured oocytes were fertilized in vitro by capacitated spermatozoa. Randomly selected oocytes were observed by TLM for seven-to-eight days. Out of 76 developed embryos, 41 were morphologically normal, of which 15 reached the blastocyst stage. Of 35 abnormally developed embryos, 17 reached the blastocyst stage, of which six had single aberrations and 11 had multiple aberrations. The hatching rate (%) was 15.6% in normally cleaving embryos, 6.25% in embryos with single aberrations, and 3.33% in those with multiple aberrations. The present study reports the first results, found by using TLM, about the frequency of the morphological defects of feline embryos, their competence to reach the blastocyst stage, and their ability to hatch.


2010 ◽  
Vol 22 (1) ◽  
pp. 296 ◽  
Author(s):  
K. Imai ◽  
T. Somfai ◽  
M. Ohtake ◽  
Y. Inaba ◽  
Y. Aikawa ◽  
...  

We previously reported that follicular wave synchronization by dominant follicle removal on Day 5 and the start of a superstimulatory treatment on Day 7 after ovum pick-up (OPU) was effective to increase oocyte quality (Imai et al. 2008 Reprod. Fertil. Dev. 20, 182). The present study was designed to examine the effect of superstimulatory treatment-induced follicular wave synchronization on quality of embryos obtained by OPU and in vitro production. Japanese Black cows were reared under the same feeding and environmental conditions and 2 OPU sessions were conducted in each cow. The first OPU session was performed in 7 cows at arbitrary days of estrous cycle using a 7.5-MHz linear transducer with needle connected to an ultrasound scanner. Then, follicles larger than 8 mm in diameter were aspirated and CIDR was inserted on Day 5 (the day of first OPU session = Day 0). The cows then received 30 mg of FSH twice a day from Days 7 to 10 in decreasing doses (4, 4, 3, 3, 2, 2, 1, 1 mg per shot) by i.m. injections. Cloprostenol (PGF; 0.75 mg) was administered in the morning of Day 9. The second OPU session was performed 48 h after PGF administration (Day 11) and only follicles larger than 5 mm in diameter were aspirated. The CIDR was removed from the cows just before OPU. Grade 1 and 2 cumulus oocyte complexes were in vitro matured, fertilized (IVF), and cultured as described by Imai et al. (2006 J. Reprod. Dev. 52, Suppl. S19-29). Some zygotes were fixed and stained to check their sperm penetration. Embryo development was monitored by time-lapse cinematography for 168 h after IVF. Cleavage pattern of embryos was classified morphologically into normal and abnormal (including those with multiple fragments, protrusions, 3 to 4 blastomeres, and uneven cell division) groups at their first cleavage. Normal penetration rate of second OPU session was significantly (P < 0.05) higher than that of the first OPU session. There were no differences in the mean percentage of total blastocyst and grade 1 blastocyst rates between the first (45.2 and 46.9%, respectively) and second (47.5 and 41.8%, respectively) OPU sessions. However, the rates of blastocysts developing from embryos that were beyond the 4-cell stage at 48 h after IVF was significantly (P < 0.05) higher after the second OPU session (81.2%) than after the first OPU session (67.4%). Furthermore, a significant difference (P < 0.05) was found in the rates of normal cleavage at the first cell division in embryos that developed to the blastocyst stage between the first and second OPU sessions (53.3% and 73.9%, respectively). These results indicate that superstimulatory treatment-induced follicular wave synchronization improved the normality of fertilization and development of cattle oocytes obtained by OPU. This work was supported by the Research and Development Program for New Bio-industry Initiatives.


Development ◽  
1982 ◽  
Vol 67 (1) ◽  
pp. 101-111
Author(s):  
Herwigo Gutzeit ◽  
Roswitha Koppa

Cytoplasmic streaming in follicles of Drosophila has been analysed in vitro by means of time-lapse films. Late vitellogenic follicles develop normally in vitro as judged by morphological criteria. Furthermore, follicles (stage 10 and younger) which were cultured in vitro for the same length of time as follicles which were filmed, developed normally in vivo after injection into a host fly. The recorded cytoplasmic movements are, therefore, unlikely to be an in vitro artefact. At early vitellogenic stages (up to stage 9; King, 1970) no cytoplasmic streaming can be detected, but at stage 10A cytoplasmic movements are initiated within the oocyte. At stage 10B, when the nurse cells start degenerating, nurse cell cytoplasm can be seen to flow into the growing oocyte. At stage 11 a central stream of nurse-cell cytoplasm reaches the oocyte within a minute. The ooplasmic streaming is most rapid at stage 10B and stage 11 and only an oocyte cortex up to 7 μm thick remains stationary. Once the bulk of the nurse-cell cytoplasm has poured into the oocyte (stage 12) the cytoplasmic movement ceases, first in the nurse cells and later in the ooplasm. In mature oocytes no cytoplasmic streaming can be detected.


2021 ◽  
Author(s):  
Eva Sophie van Marion ◽  
Effrosyni A. Chavli ◽  
Joop S.E. Laven ◽  
Régine P.M. Steegers-Theunissen ◽  
Maria P.H. Koster ◽  
...  

Abstract Background: Despite all research efforts during this era of novel time-lapse morphokinetic parameters, a morphological grading system is still routinely being used for embryo selection at the blastocyst stage. The blastocyst expansion grade, as evaluated during morphological assessment, is associated with clinical pregnancy. However, this assessment is performed without taking the dynamics of blastocoel expansion into account. Here, we studied the dynamics of blastocoel expansion by comparing longitudinal blastocoel surface measurements using time-lapse embryo culture. Our aim was to first assess if this is impacted by fertilization method and second, to study if an association exists between these measurement and ongoing pregnancy. Methods: This was a retrospective cohort study including 225 couples undergoing 225 cycles of in vitro fertilization (IVF) treatment with time-lapse embryo culture. The fertilization method was either conventional IVF, intracytoplasmic sperm injection (ICSI) with ejaculated sperm or ICSI with sperm derived from testicular sperm extraction (TESE-ICSI). This resulted in 289 IVF embryos, 218 ICSI embryos and 259 TESE-ICSI embryos that reached at least the full blastocyst stage. Blastocoel surface measurements were performed on time-lapse images every hour, starting from full blastocyst formation (tB). Linear mixed model analysis was performed to study the association between blastocoel expansion, the calculated expansion rate (µm2/hour) and both fertilization method and ongoing pregnancy. Results: The blastocoel of both TESE-ICSI embryos and ejaculated sperm ICSI embryos was significantly smaller than the blastocoel of IVF embryos (beta -647.7 µm2; 95% confidence interval (CI): -1133.6 to -161.9, beta -1017.0 µm2; 95% CI: -1525.1 to -508.8, respectively). In addition, the blastocoel of embryos resulting in an ongoing pregnancy was significantly larger (beta 795.4 µm2; 95% CI: 15.4 to 1575.4) and expanded significantly faster (beta 100.9 µm2/hour; 95% CI: 5.7 to 196.2) than the blastocoel of embryos that did not result in an ongoing pregnancy. Conclusion: Longitudinal blastocyst surface measurements and expansion rates are promising non-invasive quantitative markers that can aid the embryo selection for transfer and cryopreservation.


2016 ◽  
Vol 28 (2) ◽  
pp. 180

The nonhuman primate (NHP) is a valuable translational model for human health studies and is widely used to investigate pre-implantation embryo development. Central to these investigations is the dependency on in vitro embryo culture (IVC). Since 2001, the single-step hamster embryo culture medium (HECM) has been the accepted standard for NHP IVC. With recent advances in formula optimization for IVC in human clinics, a re-examination of optimal NHP IVC media is warranted. Thus, two types of commercially available IVC media routinely used in human applications were compared with HECM-9: Global (single-step; LifeGlobal Group, Guilford, CT, USA), and Quinns Advantage (sequential; SAGE, Trumbull, CT, USA). Normally cycling, adult rhesus monkeys (n = 3) underwent controlled ovarian stimulations, and follicles were aspirated via laparoscope. Recovered ova were fertilized in vitro and the resultant zygotes (n = 138) were cultured for 9 days in HECM-9, Global, or Quinns with 10% protein supplement at 37.5°C in humidified tri-gas (6% CO2, 5% O2, and 89% N). Single-step media (HECM-9 and Global) were refreshed every two days while embryos were cultured for Days 1–3 in Quinns Advantage Cleavage medium without being replaced and in Quinns Advantage Blastocyst medium for Days 4–9 with medium changes every 2 days. Embryos were observed for cleavage, compaction, and blastocyst development. Proportional data with equal variance and normal distribution were analysed by one-way ANOVA, and significance was determined post-hoc by the Holm-Sidak method with P < 0.05. Developmental stage data ± s.e.M are presented in Table 1; a change in superscript indicates a significant difference within the column. There was no difference in embryonic cleavage or morula compaction between the three culture media evaluated, indicating no obvious differences in their effects on embryonic development 1 to 3 days after fertilization. However, a greater proportion of blastocysts developed in Global medium compared with HECM-9, and though it was not statistically different, embryos cultured in Global tended to reach the blastocyst stage more frequently than those in Quinns. Although not significant due to large variances in each group, blastocyst expansion also tended to occur more frequently in Global medium than in HECM-9 or Quinns. Taken together, these data indicate that single-step Global is as supportive of early embryonic development as HECM-9 but is better formulated to facilitate later stage differentiation and would be better suited for use in updated standard NHP IVC protocols. Table 1.Cleavage, compaction, blastocysts, and expansion of embryos in HECM-9, Global, and Quinns media


Sign in / Sign up

Export Citation Format

Share Document