The site of fertilisation determines dorsoventral polarity but not chirality in the zebra mussel embryo

Zygote ◽  
1998 ◽  
Vol 6 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Craig Marc Luetjens ◽  
Adriaan W.C. Dorresteijn

The dorsoventral polarity of unequally cleaving spiralian embryos becomes established at an early stage. The factors determining the position of the dorsoventral axis are still unknown. We present data showing that the sperm entry point (SEP) in both normal development and under experimental conditions determines the position of the first cleavage furrow in Dreissena embryos. The position of the spindles at second cleavage is directed by the site of fertilisation also, and the large, dorsal D quadrant of the 4-cell stage always forms opposite the SEP. The spiral chirality at third cleavage seems to be independent of both the fertilisation point and the arrangement of the quadrants. Dextral and sinistral third cleavages are found in a single egg batch, but sinistral cleavages prevail. We postulate that two factors coordinate the proper positioning of the dorsoventral axis. The sperm entry point as an epigenetic factor determines the dorsal side of the embryo. But since the dorsoventral axis forms oblique to the first cleavage furrow, this first decision is still ambiguous, and a second decision is required that, due to the alternative chirality of spiral cleavage, finally sets up the dorsoventral axis.

Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 845-856 ◽  
Author(s):  
M.V. Danilchik ◽  
J.M. Denegre

The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Angela Libutti ◽  
Anna Rita Rivelli

In recent years, soil addition with organic amendments, such as biochar and compost, has gained attention as an effective agronomic practice to sustain soil fertility, enhance plant growth and crop yield. Well known are the positive effects of compost on yield of a wide crop varieties, while both positive and negative responses are reported for biochar Therefore, the aim of the study was to verify the effect of biochar mixed with three types of compost on quanti-qualitative response of Swiss chard (Beta vulgaris L. cycla), a leafy green vegetable rich in dietary antioxidants, largely consumed worldwide. A factorial experiment in pots with two factors, including biochar (without biochar and with biochar from vine pruning residues) and compost (without compost, with compost from olive pomace, with vermicompost from cattle manure, and with compost from cattle anaerobic digestate), was setup. Two growth cycles were considered, and a set of quantitative (height of plants, number, area and fresh weight of leaves) and qualitative parameters (carotenoids, chlorophyll, total N, and NO3−content of leaves) were analyzed. Biochar decreased plant growth and NO3− leaf content; on the contrary, it increased total N leaf content, while compost improved all the considered parameters. The interactive effect of biochar and compost was evident only on total N and NO3− leaf content. In our experimental conditions, the compost showed to be the best option to improve Swiss chard growth and increase the content of phytopigments, while the biochar-compost mixtures did not produce the expected effect.


1976 ◽  
Vol 42 (3) ◽  
pp. 983-988 ◽  
Author(s):  
R. Nakamura ◽  
R. Taniguchi ◽  
Y. Oshima

RT and its left/right difference of both biceps muscles were measured by electromyogram (EMG) in the bilateral simultaneous flexion of elbows using 11 left- and 13 right-handed subjects under four conditions which were combinations of two factors: warning signal; presence or absence of a fore-period, and position of limbs; elbow 90° or 135°. EMG-RT and its left/right difference were influenced by these factors. The effects of warning and position of limbs were not the same on the preferred and non-preferred hands. It was assumed that EMG-RTs of biceps in the preferred hand were less influenced by these experimental conditions.


1986 ◽  
Vol 6 (11) ◽  
pp. 4031-4038
Author(s):  
M E Minie ◽  
M E Koshland

The gene for the immunoglobulin M (IgM)-polymerizing protein, the J chain, is activated when the mature B cell is triggered to secrete pentamer IgM. Activation of the gene was found to be associated with chromatin changes in a 240-base-pair region at the 5' end of the gene. Analyses of lymphoid lines showed that the 5' region was resistant to nuclease digestion at the immature B-cell stage; it became slightly more accessible in mature B cells and cells at an early stage in the IgM response and then displayed an open, hypersensitive structure in IgM-secreting cells. In addition, analyses of normal, mitogen-stimulated lymphocytes showed that the open hypersensitive structure was coinducible with J-chain gene expression. These results suggest that the 5' chromatin changes precede transcription, making control sequences within the site accessible to regulatory factors.


1992 ◽  
Vol 71 (3_suppl) ◽  
pp. 811-813 ◽  
Author(s):  
F. Schäfer ◽  
S.J. Raven ◽  
T.A. Parr

A major criterion for assessing the value of any experimental model in scientific research is the degree of correspondence between its results and data from the real-life process it is designed to model. Intra-oral models aimed at predicting the anti-caries efficacy of toothpastes or other topical treatments should therefore be calibrated against treatments proven to be effective in a caries clinical trial. For this to be achieved, it is necessary that a model with high sensitivity be designed, while at the same time retaining relevance to the process to be modeled. This means that the effects of the various experimental conditions and parameters of the model on its performance must be understood. The purpose of this paper was to assess the influence of two specific factors on the performance of an in situ enamel remineralization model, which is based on human enamel slabs attached to partial dentures. The two factors are initial lesion severity and origin of enamel sample. The results indicated that initial lesion size affected whether net remineralization or net demineralization occurred during in situ treatment. Samples with an initial range of from 1500 to 2500 (ΔZ) tended more toward demineralization than did samples with ΔZ > 3500. This means that treatment groups must be well-balanced with respect to initial lesion size. Differences in initial demineralization severity between different tooth locations must also be considered so that systematic treatment bias can be avoided. The solution used in the model discussed here is based on a balanced experimental design, which allows this effect to be taken into account in the data analysis.


Development ◽  
1979 ◽  
Vol 53 (1) ◽  
pp. 145-162
Author(s):  
H. Alexandre

The inhibition of spermidine and spermine synthesis by methylglyoxal-Bis(guanylhydrazone) (MeGAG) at concentrations of 5, 10 and 20 µM, induces a reversible metabolic quiescence of mouse embryos, cultured in vitro from the 2-cell stage, at an average of 10·2, 8·5 and 6·9 cell stages respectively. In contrast, the inhibition of putrescine synthesis by α-methylornithine (α-MeOrn) at concentrations up to 10 mM fails to inhibit blastocyst formation, as shown previously. Complete reversibility of this induced arrest of development is observed for treatments up to 31 h with MeGAG at 10 µM. In agreement with the biological clock theory of Smith & MacLaren's hypothesis, the delay in cavitation is proportional to the length of treatment. However, the average cell numbers of the ‘delayed nascent blastocysts’ of all treated embryos (21·8–24·2) are consistently lower than that of control embryos (33·6) irrespective of the duration of treatment. It seems therefore that under some experimental conditions, DNA and chromosome replication on the one hand and cytoplasmic maturation on the other may be desynchronized. This suggests a role for a cytoplasmic factor in the induction of cavitation.


Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2619-2628 ◽  
Author(s):  
R. Kuraishi ◽  
L. Osanai

Contribution of maternal cytoplasmic factors and cellular interaction to determination of archenteron in a starfish embryo was analyzed by (1) examining temporal and positional pattern of expression of an endoderm-specific enzyme, alkaline phosphatase, (2) deleting the vegetal polar fragment from an immature oocyte and (3) changing the orientation of a blastomere within an early stage embryo. The archenteron (and the differentiated digestive tract) of Asterina pectinifera was divided into three areas based on the time of start of alkaline phosphatase expression. At 27 hours after 1-methyladenine treatment, the whole archenteron except the anterior end started to express alkaline phosphatase. The anterior negative area differentiated into mesodermal tissues such as mesenchyme cells and anterior coelomic pouches (anterior mesodermal area). The alkaline-phosphatase-positive area 1 gave rise to the esophagus and the anterior end of the stomach. Alkaline-phosphatase-positive area 2, which was gradually added to the posterior end of the archenteron after 30 hours, became alkaline-phosphatase- positive and formed the middle-to-posterior part of the stomach and the intestine. When the vegetal oocyte fragment, the volume of which was more than 8% of that of the whole oocyte, was removed from the immature oocyte, archenteron formation was strongly suppressed. However, when the volume deleted was less than 6%, most of the larvae started archenteron formation before the intact controls reached the mesenchyme-migration stage (30 hours). Although cells in the alkaline-phosphatase-positive area 2 are added to the posterior end of the archenteron after 30 hours in normal development (R. Kuraishi and K. Osanai (1992) Biol. Bull. Mar. Biol. Lab., Woods Hole 183, 258–268), few larvae started gastrulation after 30 hours. Estimation of the movement of the oocyte cortex during the early development suggested that the area that inherits the cortex of the 7% area coincides with the combined area of anterior mesodermal area and alkaline-phosphatase-positive area 1. When one of the blastomeres was rotated 180° around the axis of apicobasal polarity at the 2-cell stage to make its vegetal pole face the animal pole of the other blastomere, two archentera formed at the separated vegetal poles. Intracellular injection of tracers showed that cells derived from the animal blastomere, which gives rise to the ectoderm in normal development, stayed in the outer layer until 30 hours; a proportion of them then entered the archenteron gradually. The involuted animal cells expressed alkaline phosphatase and were incorporated into the middle-to-posterior part of the stomach and the intestine. These results suggest that anterior mesodermal area and alkaline-phosphatase-positive area 1 are determined by cytoplasmic factor(s) that had already been localized in their presumptive areas. In contrast, alkaline-phosphatase-positive area 2 becomes the endoderm by homoiogenetic induction from the neighboring area on the vegetal side, namely alkaline-phosphatase-positive area 1.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Daouda Kouotou ◽  
Horace Ngomo Manga ◽  
Abdelaziz Baçaoui ◽  
Abdelrani Yaacoubi ◽  
Joseph Ketcha Mbadcam

In this study, activated carbons were prepared from oil palm shells by physicochemical activation. The methodology of experimental design was used to optimize the preparation conditions. The influences of the impregnation ratio (0.6–3.4) and the activation temperature between 601°C and 799°C on the following three responses: activated carbon yield (R/AC-H3PO4), the iodine adsorption (I2/AC-H3PO4), and the methylene blue adsorption (MB/AC-H3PO4) results were investigated using analysis of variance (ANOVA) to identify the significant parameters. Under the experimental conditions investigated, the activation temperature of 770°C and impregnation ratio of 2/1 leading to the R/AC-H3PO4of 52.10%, theI2/AC-H3PO4of 697.86 mg/g, and the MB/AC-H3PO4of 346.25 mg/g were found to be optimum conditions for producing activated carbon with well compromise of desirability. The two factors had both synergetic and antagonistic effects on the three responses studied. The micrographs of activated carbons examined with scanning electron microscopy revealed that the activated carbons were found to be mainly microporous and mesoporous.


2006 ◽  
Vol 18 (2) ◽  
pp. 244
Author(s):  
A. R. S. Coutinho ◽  
M. P. Milazzotto ◽  
M. A. Peres ◽  
M. G. Marques ◽  
A. C. Nicacio ◽  
...  

Apoptosis is a physiological event involved with death and tissue replication, fulfilling an important function of tissue organizations during embryogenesis. This mechanism occurs in in vivo as well as in vitro pre-implantation embryos, but most frequently in the latter. The transcriptional activation of pig embryos occurs at the four-cell stage, which is the longer stage during the pre-implantation period. This stage is characterized by embryonic developmental blockage that decreases the production rates (embryos loss). The aim of this study was to evaluate a correlation between apoptosis mechanism and developmental blockage of IVP porcine embryos. Immature oocytes after IVM/IVF were submitted to IVC in PZM-1 medium containing BSA 3 mg/mL at 38.5�C, 5% CO2 in air and high humidified atmosphere. The embryo development was analyzed at 96 h of cultute (Day 4) in order to verify cleavage rate and blockage (4 cells) and non-blockage (e8 cells) embryo rates. Out of 625 grade I, II, and III oocytes submitted to IVP, 70.3 � 5.2% (430/625) cleaved from which 27.1 � 10.3% (166/625) were blocked and 43 � 10.8% (264/625) were non-blocked. Blocked and non-blocked embryos were assessed to evaluate apoptosis rates. Qualitative assays of embryo cells were achieved with two different DNA stains: YOPRO-1 (Molecular Probe�; Invitrogen Brasil, Ltd., Sao Paulo, Brazil), permeable though plasma membrane in the early stage of apoptosis, and TUNEL (Roche�; Amersham Biosciences, Sao Paulo, Brazil), which detects DNA fragmentation in the last stages of apoptosis. The embryos were stained with 0.1 �M YOPRO-1/mL PBS, incubated 15 min at 38�C, 5% CO2 in air and high humidified atmosphere, and immediately observed by means of confocal microscopy. For the TUNEL assay, embryos were fixed in 4% paraformaldehyde solution (w/v) in PBS for 1 h at room temperature, and incubated in permeabilization solution [0.5% (v/v) Triton X-100, 0.1% (w/v) sodium citrate in PBS] for 2 h. For positive control, samples were treated with DNase-I at 37�C for 1 h. The negative control and experimental samples were incubated with buffer solution under the same conditions. The positive control and experimental samples were incubated with enzymatic and stain solution (FITC) at 37�C for 1 h; the negative control was incubated with only enzymatic solution. The embryos were stained with Hoechst 33342 (5 �/mL) and observed by means of fluorescence microscopy. Blocked embryos showed more apoptosis (66% and 40% to YOPRO-1 and TUNEL, respectively) than non-blocked embryos (25% and 0% to YOPRO-1 and TUNEL, respectively). In conclusion, the developmentally blocked embryos suffered more apoptosis, although morphologic apoptosis assays (light and electronic microscopic) must be performed to confirm this finding. This work was supported by FAPESP 04/01252-4.


2004 ◽  
Vol 16 (2) ◽  
pp. 141
Author(s):  
S. Eckardt ◽  
N.A. Leu ◽  
K.J. McLaughlin

In both murine and porcine preimplantation stage clones, mosaicism in gene expression has been observed, indicating variation in transcription of some genes between cells of the individual clone (Boiani M et al., 2002 Genes Dev. 16, 1209–1219; Park KW et al., 2002 Biol. Reprod. 66, 1001–1005). This observation raises the question as to whether all blastomeres within one early-stage clone are equivalent, or whether there are differences in developmental potential. To address this, we aggregated preimplantation-stage clone embryos with fertilized embryos and assessed contribution of Oct4-GFP expressing cells of clone origin in blastocysts and in vitro outgrowths. In normal embryos, the Oct4-GFP transgene is expressed during preimplantation stages and reflects expression of Oct4 protein. Mouse cumulus cell clones were produced from cells transgenic for Oct4-GFP (Szabó PE et al., 2002 Mech. Dev. 115, 157–160) as described (Boiani M et al., 2002 Genes Dev. 16, 1209–1219). Four-cell-stage clones and synchronous fertilized non-transgenic embryos were aggregated in micro-wells after removal of the zona pellucida using acid Tyrode’s solution. Aggregates were cultured to the blastocyst stage in -MEM supplemented with bovine serum albumin (0.4% w/v). All control chimeras produced from four-cell-stage fertilized non-transgenic and Oct4-GFP transgenic embryos formed blastocysts, and 15 of 20 had GFP-expressing cells. The majority of clone-wild-type aggregates developed to the blastocyst stage (35/40); however, contribution of GFP-expressing cells was observed in fewer blastocysts compared to controls (12/35; P<0.05). Contribution of GFP expressing clone cells to the ICM varied between 30% and 100% of cells as determined by subjective evaluation of GFP fluorescence overlaying bright-field images. During in vitro outgrowth formation of synchronous aggregation chimeras of clone and wild-type embryos, maintenance of clone contribution to the ICM mound was observed, but at a lower frequency (12% v. 34% at the blastocyst stage). The results suggest that aggregation with fertilized cells does not provide benefit to clone blastomeres during preimplantation stages. Possibly, clone blastomeres may not be competitive with wild-type blastomeres, or are developmentally asynchronous, which will be tested using asynchronous chimeras.


Sign in / Sign up

Export Citation Format

Share Document