Induced Three-wave Interactions in Eclipsing Pulsars

1995 ◽  
Vol 12 (1) ◽  
pp. 71-75
Author(s):  
Qinghuan Luo ◽  
D. B. Melrose

AbstractThree-wave interactions involving two high-frequency waves (in the same mode) and a low-frequency wave are discussed and applied to pulsar eclipses. When the magnetic field is taken into account, the low-frequency waves can be the ω-mode (the low-frequency branch of the ordinary mode) or the z-mode (the low-frequency branch of the extraordinary mode). It is shown that in the cold plasma approximation, effective growth of the low-frequency waves due to an anisotropic photon beam can occur only for z-mode waves near the resonance frequency. In the application to pulsar eclipses, the cold plasma approximation may not be adequate and we suggest that when thermal effects are included, three-wave interaction involving low-frequency cyclotron waves (e.g. Bernstein modes) is a plausible candidate for pulsar eclipses

1997 ◽  
Vol 58 (2) ◽  
pp. 345-366 ◽  
Author(s):  
QINGHUAN LUO ◽  
D. B. MELROSE

The effect of a beam of radio waves of very high brightness passing through a cold, magnetized, electron–positron plasma is discussed. The properties of the natural wave modes in such a plasma are summarized, and approximate forms for the nonlinear response tensor are written down. Photon-beam-induced instabilities of low-frequency waves in the pair plasma are analysed in the random-phase approximation. When three-wave interactions involve two high-frequency waves in the same mode and a low-frequency wave in a different mode, wave–wave interactions are similar to wave–particle interactions in that photons act like particles that emit and absorb low-frequency waves. The absorption coefficients for various low-frequency waves due to a photon beam are evaluated. In a pure electron–positron plasma, photon-beam-induced instabilities can be effective only when either the high-frequency or the low-frequency waves are strongly modified by the magnetic field. The growth of the low-frequency waves is most effective when the high-frequency photon beam has a frequency close to the cyclotron frequency.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


1968 ◽  
Vol 46 (10) ◽  
pp. S638-S641 ◽  
Author(s):  
D. B. Melrose

The acceleration of ions from thermal velocities is analyzed to determine conditions under which heavy ions can be preferentially accelerated. Two accelerating mechanisms involving high-and low-frequency hydromagnetic waves respectively are considered. Preferential acceleration of heavy ions occurs for high-frequency waves if the frequency spectrum falls off faster than (frequency)−1. For the low-frequency waves heavy ions are less effectively accelerated than lighter ions. However, very heavy ions can be preferentially accelerated, the abundances of the very heavy ions being enhanced by a factor Ai over the thermal abundances. Acceleration of ions in the envelope of the Crab nebula is considered as an example.


2016 ◽  
Vol 34 (7) ◽  
pp. 609-622 ◽  
Author(s):  
Ingo Richter ◽  
Hans-Ulrich Auster ◽  
Gerhard Berghofer ◽  
Chris Carr ◽  
Emanuele Cupido ◽  
...  

Abstract. The European Space Agency's spacecraft ROSETTA has reached its final destination, comet 67P/Churyumov-Gerasimenko. Whilst orbiting in the close vicinity of the nucleus the ROSETTA magnetometers detected a new type of low-frequency wave possibly generated by a cross-field current instability due to freshly ionized cometary water group particles. During separation, descent and landing of the lander PHILAE on comet 67P/Churyumov-Gerasimenko, we used the unique opportunity to perform combined measurements with the magnetometers onboard ROSETTA (RPCMAG) and its lander PHILAE (ROMAP). New details about the spatial distribution of wave properties along the connection line of the ROSETTA orbiter and the lander PHILAE are revealed. An estimation of the observed amplitude, phase and wavelength distribution will be presented as well as the measured dispersion relation, characterizing the new type of low-frequency waves. The propagation direction and polarization features will be discussed using the results of a minimum variance analysis. Thoughts about the size of the wave source will complete our study.


2015 ◽  
Vol 33 (8) ◽  
pp. 991-995 ◽  
Author(s):  
J. Manninen ◽  
N. G. Kleimenova ◽  
A. Kozlovsky ◽  
I. A. Kornilov ◽  
L. I. Gromova ◽  
...  

Abstract. We investigate a non-typical very low frequency (VLF) 1–4 kHz hiss representing a sequence of separated noise bursts with a strange "mushroom-like" shape in the frequency–time domain, each one lasting several minutes. These strange afternoon VLF emissions were recorded at Kannuslehto (KAN, ϕ = 67.74° N, λ = 26.27° E; L ∼ 5.5) in northern Finland during the late recovery phase of the small magnetic storm on 8 December 2013. The left-hand (LH) polarized 2–3 kHz "mushroom caps" were clearly separated from the right-hand (RH) polarized "mushroom stems" at the frequency of about 1.8–1.9 kHz, which could match the lower ionosphere waveguide cutoff (the first transverse resonance of the Earth–ionosphere cavity). We hypothesize that this VLF burst sequence could be a result of the modulation of the VLF hiss electron–cyclotron instability from the strong Pc5 geomagnetic pulsations observed simultaneously at ground-based stations as well as in the inner magnetosphere by the Time History of Events and Macroscale Interactions during Substorms mission probe (THEMIS-E; ThE). This assumption is confirmed by a similar modulation of the intensity of the energetic (1–10 keV) electrons simultaneously observed by the same ThE spacecraft. In addition, the data of the European Incoherent Scatter Scientific Association (EISCAT) radar at Tromsø show a similar quasi-periodicity in the ratio of the Hall-to-Pedersen conductance, which may be used as a proxy for the energetic particle precipitation enhancement. Our findings suggest that this strange mushroom-like shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF–VLF (ultra low frequency–very low frequency) wave interaction and the ionosphere waveguide propagation.


Author(s):  
Zhenjun Zheng ◽  
Xiaozhou Ma ◽  
Xuezhi Huang ◽  
Yujin Dong ◽  
Guohai Dong

Abstract Long waves with periods greater than tens of seconds propagating into a harbor may be trapped and significantly amplified, thereby resulting in detrimental effects on port operations. The water surface elevation in the Hambantota Port, Sri Lanka, was measured to investigate the low-frequency oscillations and their forcing mechanisms. Results show that the port is protected well from short waves with periods less than 30 s; however, the protection against long waves with periods larger than 30 s is inadequate. The spectral analyses identified four dominant periods within the low-frequency wave range. Modal analysis based on the extended mild-slope equation shows that the measured spectrum density for some dominant periods is low because the measurement point is close to the corresponding modal lines. Correlation analysis shows that low-frequency oscillations inside the Hambantota Port are excited directly by the low-frequency waves contained within the incident waves. The low-frequency waves outside the Hambantota Port are generated from the higher-frequency gravity waves (swell and wind waves) due to nonlinear interactions. Empirical formula is adopted to estimate the low-frequency wave height outside the Hambantota Port.


2008 ◽  
pp. 87-99 ◽  
Author(s):  
A. Andic

High-frequency waves (5 mHz to 20 mHz) have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analyzed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.


Sign in / Sign up

Export Citation Format

Share Document